ACPC Advanced SCR Power Controller

 Quick Start Manual 0037-75601(PK577)This manual is intended to be a quick reference guide for basic installation requirements and an
overview of the connections, wiring considerations and general specifications for the ACPC overview of the connections, wiring considerations and general specifications for the ACPC
Advanced SCR Power Controller. For complete installation and operation, refer to the PK575 ACPC Hardware Instruction Manual. For complete configuration and programming refer to the PK576 ACPC Configuration and Programming Manual. The most current revisions may be found on the Chromalox website: www.chromalox.com

1. IMPORTANT SAFEGUARDS

AWARNING

ELECTRIC SHOCK HAZARD: Read and understand all instructions before installing, servicing or operating this controller. Failure to do so could result in equipment or property damage as well as personal injury and even death.
HIGH VOLTAGE is used in the operation of this equipment. DEATH ON CONTACT may result if personnel fail to observe safety precautions. Learn the areas may result if personnel fail to observe safety precautions. Learn the areas
containing high-voltage connections when installing or operating this equipment.

Be careful not to contact high-voltage connections when installing or operating his equipment. Before working inside the equipment, turn power off and ground all points of high voltage potential before touching.
electric shock hazard. Any installation involving control equipment must e performed by a qualified person and must be effectively grounded in be performed by a qualified person and must be effectively groun
accordance with the National Electrical Code to eliminate shock hazard.

ACAUTION

The Owner/Installer must provide all necessary safety and protection devices nd follow all current electrical wiring standards and regulations. Failure to do o may compromise the integrity of the controller and/or cause product failure resuiting in a safety risk to operational service and personnel.
his controller utilizes a heat sink which is designed to cool the unit during operation. Under no circumstance should air flow around the controller be compromised in any way. Failure to do so may result in the overheating of the controller, product failure, product temperatures and even fire.

A WARNING

uring continuous operation, the heat sink can reach a very high temperatures, uring continuous operation, the heat sink can reach a very high temperatures, thermal inertia.
2. OVERVIEW \& LAYOUT

This section contains the instructions needed for correct installation of ACPC modular power controller on the machine/host system control panel and for correct connection of the power supply, inputs, outputs and interfaces.

ACAUTION

Carefully read the following warnings before installing the instrument! Disregard of such warnings could create electrical safety and electromagnetic compatibiity problems, as well as void the warranty.

LECTRICAL POWER SUPPLY

he controlier DOES NOT have an On/Off switch: the user must install switch/isolator conlaforming to safety requisites (CE mark) to cut off the power supply up-line of the controller.

The switch must be installed in the immediate vicinity of the controller in easy reach of the operator.

A single switch can be used for multiple devices.
the earth connection must be made with a specific lead
if the product is used in applications with risk of harm to persons or damage to machines It is advisable to provide the ability to check for tripped alarms during regular operation. NOTES ON ELECTRICAL SAFETY AND ELECTROMAGNETIC COMPATIBILITY: CE: Conformity EMC (electromagnetic compatibility) conformity) in compliance with Direc-tive 2014/30/EU and following modifications. Series ACPC are mainly intended for industrial use, installed on panels or control panels of production process machines or ystems. For purposes of electromagnetic compatibility, the most restrictive generic hown on the table.
LV (low voltage) conformity in compliance with Directive 2014/35/EU.
EMC RECOMMENDATIONS FOR CORRECT INSTALLATION FOR PURPOSES OF EMC The power supply for th
directly from a cut-off devicectronic instrumentation on the panels must always come
Electronic instrumentation with fuse for the instrument part.
contactors, solenoids,etc., MUST ALWAYS be powered dey separate such as relays,
contactors, solenoids,etc., MUST ALWAYS be powered by separate lines.
When the power supply line of electronic instruments is heavily disturbed
thyristor power groups or by motors, you should use an isolation transformer only for the controllers, grounding its sheathing.
It is important for the system to be well-grounded:
voltage between neutral and ground must not be $>1 \mathrm{~V}$
If the grid voltage is highly unstable, use a voltage stabilizer.

- In proximity of high-frequency generators or arc welders, use adequate grid filters The power supply lines must be separate from instrument input and output lines. INPUT AND OUTPUT CONNECTIONS
Before connecting or disconnecting any connection, always check that the power and contro
cables are isolated from switches to protect power lines. The fuses present in the module function solely as a protec-tion for the ACPC semiconductors.
- Connected outside circuits must be doubly isolated.
- To connect analog inputs, strain gauges, linears, (you have to:
- physically separate the input cables from those of the power supply, outputs, and power connections.
use braided and shielded cables, with sheathing grounded at a single point. INSTALLATION NOTES
Use the extra-rapid fuse indicated in the catalogue according to the connection example quipped.
Moreover, the applications with solid-state units require a safety automatic switch to install it properly insid line. To ensure the high reliability of the device, it is necessary to Fit the properly inside the panel so to obtain an adequate thermal exchange. Fit the device vertically (maximum angle 10° to the vertical axis)
Vertical distance between a device and the panel wall $>100 \mathrm{~mm}$ - Vertical distance between a device and the panel wall > 100 mm - Vertical distance between a device and the next one at last 300 mm .
- Horizontal distance between a device and the next one at last 10 mm .

Check that the cable holder runners do not reduce these distances, in this case fit the cantilever units opposite the panel so that the air can flow vertically without any obstacles. Dissipation of device thermal power with effects on installation room temperature.

- Thermal power dissipation with limits on installation room temperature

Requires exchange with external air or an air conditioner to transfer dissipated power

- Maximum limits of voltage and derived power of transients on the line, for which the solid
state power unit contains protective devices (based on the model).
- Presence of dispersion current in ACPC in non-conducting state) (current of a few mA Presence of dispersion current in ACPC in noin-co.
due to RC Snubber circuit to protect the thyristor).

3. FUSE REPLACEMENT

Replacing the Internal Fuse (Optional)

IWARNING

WARNING: the washer must be between the bolt and the copper strap (NOT under the fuse).

- Undo the cover fastening screw (1)

Remove the cover following the movement indicated by the arrow (2)

- Slacken the two bolts fixing the fuse in place with a No. 19 spanner (ACPC 500/600A) or a No. 17 spanner (ACPC 400A). There is no need to remove the bolts, as the fuse is pulled out of its housing as shown by the arrows (5).
- Insert the new fuse as indicated by the arrows (6)

4. CERTIFICATIONS

(1).	Conformity C/CSA/US CoFC no. 70002856 (NOTE: CFW 400-600A products are not approved CSA)
CE	The device are manufactured according with the Community Directives 2011/65/EU (RoHS) 2014/30/EU (EMC), 2014/35/EU (LVD) in reference to product standard: EN 50581:2012 EN 60947-4-3:2014
(U)	Conformity C/UL/US file no. E243386 vol. 1 sez. 5 (NOTE: UL pending for CFW 400...600A)
Scgrrnsssm	Short Circuit Current Rating 100KA / 600V according to UL 508 for $100 \mathrm{~A}, 200 \mathrm{~A}$ and $250 \mathrm{~A}, 480 \mathrm{~V}$ and 600 V models only

ACPC 400 to 600A

9. TECHNICAL DATA

POWER (SOLID STATE RELAM)									
CATEGORY OF USE (Tab. 2 EN60947-4-3)	AC 51 resistive or low inductance loads AC 55b short wave infrared lamps (SWIR) AC 56a transformers, resistive loads with high temperature coefficient			CATEGORY OF USE (Tab. 2 EN60947-4-3)	AC 51 resistive or low inductance loads AC 55b short wave infrared lamps (SWIR) AC 56a transformers, resistive loads with high temperature coefficient				
Trigger Mode	PA - - oad control via adjustment of firing phase angle ZC - Zero Crossing with constant cycle time (settable in range $1-200 \mathrm{~s}$) BF - Burst Frirsing with wariable cycle time (GT) optimized minimum. HSC - Half Single Cycle corresponds to Burst Firinin that includes ON and OFF halfcycles, Useful for reducing flicker with short-wave IR loads (applied only to calibrate you change feedback mode)			Trigger Mode	PA - load control via adjustment of firing phase angle ZC - Zero Crossing with constant cycle time (settable in range 1-200s) BF - Burst Firing with variable cycle time (GTT) optimized minimum. HSC - Half Single Cycle corresponds to Burst Firing that includes ON and OFF halfcycles. Useful for reducing flicker with short-wave IR loads (applied only to calibrate each time you change feedback mode)				
	V , V : Voltage feedback proportional to RMS voltage value on load to compensate pos- line voltage andor variations in load impedance in line voltage andror viritions in wer value on load to compensate variations								
Feedba				Feedback Mode	V, V: Voltage feedback proportional to RMS voltage value on load to compensate possible variations in line voltage.				
Max rated voltage	480 Vac	600 Vac	690 Vac		I, \mathbf{I}^{2} : Current feedback: bound to RMS current value on load to compensate variations in line voltage and/or variations in load impedance.				
Work voltage range	$90 . .530 \mathrm{Vac}$	$90 . .660 \mathrm{Vac}$	$90 . .760 \mathrm{Vac}$		W: Power feedback: proportional to real power value on load to compensate variations in line voltage and/or variations in load impedance.				
Non-repetitive voltage	1200Vp	1600Vp	1600Vp						
Rated frequency		50/60Hz auto-determination		Max rated voltage	480 Vac	600 Vac	690Vac		
Critical Dv/dt with output	1000V//sec			Work voltage range Non-repetitive voltage	$90 . . .530 \mathrm{Vac}$	$90 . .660 \mathrm{Vac}$	$90 . .760 \mathrm{Vac}$		
				1200Vp	1600Vp	1600Vp			
Held nominal voltage of on the impulse	4 kV				Non-repetitive voltage Rated frequency Critical Dv/dt with output	50/60Hz auto-determination			
Nominal current for short circuit condition	5 KA			1000V//sec					
Protection	RC, extrarapid fuses			Held nominal voltage of on the impulse		4kV			
Thermic Dissipation	ACPC models dissipate thermic power based on load current: Pdissipation = l_load_Arms * 1.3 V (W) For models with integrated fuse, also consider dissipated power at rated current shown on the fuse table			Nominal current for short circuit condition	5KA				
Rated current AC51 non-inductive or slightly induc- tive loads, resistance furnaces	ACPC 40 Nominal current $40 \mathrm{Arms} @ 40^{\circ} \mathrm{C}$ in continuous service Non-repetitive overcurrent $\mathrm{t}=10 \mathrm{~ms}$: 1400A It for blowout: 10000A ${ }^{2}$ s 60 Arms @ $40^{\circ} \mathrm{C}$ in continuous service Non-repetitive overcurrent $\mathrm{t}=10 \mathrm{~ms}$: 1500A I^{2} t for blowout: $12000 A^{2} s$ ACPC 100 Nominal current $100 \mathrm{Arms} @ 40^{\circ} \mathrm{C}$ in continuous service Non-repetitive overcurrent t=10ms: 1900A I^{2} t for blowout: 18000 ${ }^{2}$'s ACPC 150 Nominal current 150 Arms @ $40^{\circ} \mathrm{C}$ in continuous service on-repetitive overcurrent $t=10 \mathrm{~ms}: 5000 \mathrm{~A}$ $I^{2} t$ for blowout: $125000 A^{2} \mathrm{~s}$ ACPC 200 Nominal current 200 Arms @ $40^{\circ} \mathrm{C}$ in continuous service on-repetitive overcurrent $\mathrm{t}=10 \mathrm{~ms}: 8000 \mathrm{~A}$ ${ }^{2} \mathrm{t}$ for blowout: $320000 \mathrm{~A}^{2} \mathrm{~s}$ ACPC 250 Nominal current 250 Arms @ $40^{\circ} \mathrm{C}$ in continuous service Non-repetitive overcurrent $t=10 \mathrm{~ms}$: 8000A $I^{2} t$ for blowout: $320000 A^{2} s$ ACPC 300 Nominal current 300 Arms @ $40^{\circ} \mathrm{C}$ in continuous service Non-repetitive overcurrent $t=10 \mathrm{~ms}: 8000 \mathrm{~A}$ $1^{2} t$ for blowout: $320000 \mathrm{~A}^{2} \mathrm{~s}$			Protection	RC, extrarapid fuses				
				Therrmic Dissipation	ACPC models dissipate thermic power based on load current Pdissipation = I_load_Arms * 1.3V (W) For models with integrated fuse, also consider dissipated power at rated current shown on the fuse table				
				Rated current AC51 non-inductive or slightly inductive loads, resistance furnaces	ACPC 400 Nominal current $400 \mathrm{Arms} @ 50^{\circ} \mathrm{C}$ in continuous service Non-repetitive overcurrent $t=10 \mathrm{~ms}$: $8,000 \mathrm{~A}$ Melting fuse ${ }^{2}$ t: $320,000 \mathrm{~A}^{2}$ s				
				ACPC 500 Nominal current 500 Arms @ $50^{\circ} \mathrm{C}$ in continuous service Non-repetitive overcurrent $\mathrm{t}=10 \mathrm{~ms}$: 15,000 A Melting fuse ${ }^{2}$ t: $1,125,000 \mathrm{~A}^{2} \mathrm{~s}$					
				ACPC 600 Nominal current 600 Arms @ $50^{\circ} \mathrm{C}$ in continuous service Non-repetitive overcurrent t=10ms: 15,000 A Melting fuse $I^{2} \mathrm{t}$: $1,125,000 \mathrm{~A}^{2} \mathrm{~s}$					
				NOTE (for all models) Minimum load controllable: 5% of product current rated level.					
				$\begin{aligned} & \text { Rated current AC56A permitted } \\ & \text { trigger modes: ZC, BF with } \\ & \text { DT Delay Triggering), PA with } \\ & \text { softstart } \end{aligned}$	Derating: 20% of rated current value.				

	Non-repetitive overcurrent $\mathrm{t}=10 \mathrm{~ms}$: 8000 A 1^{2} t for blowout: 320000 A 2 s NOTE (for all models) Minimum load controllable: 5% of product current rated level.
Rated current AC56A permitted trigger modes: ZC, BF with DT (Delay Triggering), PA with softstart	Derating: 20% of rated current value.

10. DERATING CURVES

ACPC $40 / 60 / 100 A \quad$ ACPC $150 / 200 / 250 / 300 A$

POWER (SOLID STATE RELAY)				
Power Supply	$24 \mathrm{Vdc} \pm 10 \%$, Class II, max 8VA Max 10 VA terminal KB-ADL Isolation 1000 V			
Fan Power Supply	$24 \mathrm{Vdc} \pm 10 \%$, 500 mA @ 25 Vdc			
Signals	Eight led: RN (Green) run state of CPU ER (Red) error signal DI1, D12, (Yellow) state of digital inputs INDIG1, INDIG2 01,02,03 (Yellow) state of power control BT (Yellow) state key HB			
Protection	1 P20			
WorkStorage Temperature	0...50 ${ }^{\circ} \mathrm{C}$ (refer to dissipation curves) $/-20^{\circ} \mathrm{C}-+70^{\circ} \mathrm{C}$			
Relative Humidity	20...85\% Ur non-condensing			
Ambient Conditions for Use	indoor use, altitude up to 2000 m			
Instalalation	panel with scre			
Instalation Requirements	Installation category II, pollution level 2, double isolation Max. temperature of air sur rounding device $40^{\circ} \mathrm{C}$ for temperature $>40^{\circ} \mathrm{C}$ refer to derating curves Device type: "UL Open Type			
Weight	Model with Internal Fuse	Master	Master +1 Expansion	Master +2 Expansions
	40A	2.2 kg	4.2 kg	6.2 kg
	60A	2.2 kg	4.2 kg	6.2 kg
	100 A	2.2 kg	4.2 kg	6.2 kg
	150A	2.3 kg	4.4 kg	6.5 kg
	200 A	2.6 kg	5.0 kg	7.4 kg
	250 A	2.6 kg	5.0 kg	7.4 kg
	300 A	2.6 kg	5.0 kg	7.4 kg
POWER (SOLID STATE RELAY)				
Power Supply	ACPC 1PH-400/500/600A: $24 \mathrm{Vdc} \pm 10 \%$ max 38 W ACPC 2PH-400/500/600A: $24 \mathrm{Vdc} \pm 10 \%$ max 66W ACPC 3PH-400/500/600A: $24 \mathrm{Vdc} \pm 10 \% \max 94 \mathrm{~W}$			
Signals	Eight led: RN (Green) run state of CPU; ER (Red) error signal; D11, D12, (Yellow) state of digital inputs INDIG1, INDIG2; 01,02,03 (Yellow) state of power control; BT (Yellow) state key HB			
Protection	1 P 20			
WorkStorage Temperature	0...50 0° (refer to dissipation curves) $/-20^{\circ} \mathrm{C}-+85^{\circ} \mathrm{C}$			
Relative Humidity	20...85\% Ur non-condensing			
Ambient Conditions for Use	indoor use, altitude up to 2000m			
Installation	panel with screws			
Instalation Requirements	Installation category II, pollution level 2, double isolation Max. temperature of air surrounding device $50^{\circ} \mathrm{C}$ for temperature $>50^{\circ} \mathrm{C}$ refer to derating curves Device type: "UL Open Type			
Weight	Model with Internal Fuse	ACPC-1PH	ACPC-2PH	ACPC 3PH
	ACPC 400	8 kg	15.5 kg	22.5 kg
	ACPC 500/600	11 kg	21 kg	31 kg

12. PANEL MOUNTING

Minimum distance <
100 mm

