Programming Instruction Manual

ACPC

Modular SCR Power Controller

CHROMALOX
Advanced Thermal Technologies

Table of Contents

Introduction 2
Field of Use 2
Characteristics of Personnel 2
Structure of this Manual 3
Communications 4
Serial Communication (Modbus) 5
C4 Compatibale Mode 5
C4 Mode 5
Connection 5
Installation of Modbus Serial Network 5
Inputs 7
INA Analog Input 7
Current Value In Load 9
Voltage Value On Load 12
Line Voltage Value 14
Power On Load 16
Digital Inputs (40 to 300 A) 18
Digital Inputs (400 to 600 A) 19
Using a Function Associated with Digital Input and Via Serial 21
Using a Function of Digital Input 1 to Enable 22
Alarms 23
Generic Alarms Al1, Al2, Al3 And Al4 23
LBA Alarm (Loop Break Alarm) 28
HB Alarm (Heater Break Alarm) 29
Power Fault Alarms (SSR_short, No_voltage and No_current) 35
Overheat Alarm 36
Fuse_open and Short_circuit_current Alarms 36
Overcurrent Fault Protection (40 to 300A Models) 37
Outputs 38
Allocation of Reference Signals 39
Allocation of Physical Outputs 42
Analog Outputs (400 to 600A Models) 44
Controls 45
Automatic / Manual Control 45
Manual Power Correction 45
Start Mode. 46
Software Shutdown 46
Other Functions 47
Fault Action Power 47
Power Alarm 47
Heating Output (Fast Cycle) 49
Operating Hour Meter 49
Power Control 50
SSR Control Modes 50
Softstart or Start Ramp 51
Delay Triggering 52
Feedback Modes 53
Heuristic Control Power 55
Heterogeneous Power Control 56
Virtual Instrument Control 57
Hardware / Software Information 59
Instrument Configuration Sheet. 67

ATTENTION!

This manual is an integral part of the product, and must always be available to operators.

This manual must always accompany the product, including if it is transferred to another user.
Installation and/or maintenance workers MUST read this manual and precisely follow all of the instructions in it and in its attachments. Chromalox will not be liable for damage to persons and/or property, or to the product itself, if the following terms and conditions are disregarded.

Important Safeguards

aWarning

HIGH VOLTAGE (up to 690 VAC) is used in the operation of this equipment; DEATH ON CONTACT may result if personnel fail to observe safety precautions.
Learn the areas containing high-voltage connections when installing or operating this equipment.

AWARNING

Be careful not to contact high-voltage connections when installing or operating this equipment.
Before working inside the equipment, turn power off and ground all points of high potential before touching them.

ACAUTION

The owner/installer must provide all necessary safety and protection devices and follow all current electrical wiring standards and regulations. Failure to do so may compromise the integrity of the controller and/or cause product failure resulting in a safety risk to operational and service personnel.

The Customer is obligated to respect trade secrets. Therefore, this manual and its attachments may not be tampered with, changed, reproduced, or transferred to third parties without Chromalox's authorization.

ACAUTION

This controller utilizes a heat sink which is designed to cool the unit during operation. Under no circumstance should air flow around the controller be compromised in any way. Failure to do so may result in the overheating of the controller, product failure, product temperatures and even fire.

AWARNING

During continuous operation, the heat sink can reach very high temperatures, and keeps a high temperature even after the unit is turned off due to its high thermal inertia.
Higher voltages may be present. DO NOT work on the power section without first cutting out electrical power to the panel. Failure to do so may cause serious injury or death.

AWARNING

ELECTRIC SHOCK HAZARD: Any installation involving control equipment must be performed by a qualified person and must be effectiveIy grounded in accordance with the National Electrical Code to eliminate shock hazard.

Introduction

The modular power controller described in this manual and shown on the cover is a separate unit for the independent control of a maximum of 3 zones. It offers high applicative flexibility thanks to the extended configurability and programmability of its parameters.

Instrument configuration and programming must be performed with a ACPC-OP or a PC connected in USB/RS232/RS485, with specific C-PWR application soft-ware.

Since it is impossible to foresee all of the installations and environments in which the instrument may be applied, adequate technical preparation and complete knowledge of the instrument's potentials are necessary.

Chronalox declines all liability if rules for correct installation, configuration, and/ or programming are disregarded, as well as all liability for systems upline and/or downline of the instrument.

Field of Use

The modular power controller is the ideal solution for applications in heat treatment furnaces, in thermoformers, in packaging and packing machines and, in general, in standard temperature control applications. Nevertheless, because it is highly programmable, the controller can also be used for other applications provided they are compatible with the instrument's technical data.

Although the instrument's flexibility allows it to be used in a variety of applications, the field of use must always conform to the limits specified in the technical data supplied.

Chromalox declines all liability for damage of any type deriving from installations, configurations, or programmings that are inappropriate, imprudent, or not conforming to the technical data supplied.

Prohibited Use

It is absolutely prohibited:

- to utilize the instrument or parts of it (including software) for any use not conforming to that specified in the technical documentation supplied;
- to modify working parameters inaccessible to the operator, decrypt or transfer all or part of the software;
- to utilize the instrument in explosive atmospheres;
- to repair or convert the instrument using non-original replacement parts;
- to utilize the instrument or parts of it without having read and correctly understood the technical documentation supplied;
- to scrap or dispose of the instrument in normal dumps; components that are potentially harmful to the environment must be disposed of in conformity to the regulations of the country of installation..

Characteristics of Personnel

This manual is intended for technical personnel, who commission the instrument by connecting it to other units, and for service and maintenance personnel.

It is assumed that such persons have adequate technical knowledge, especially in the fields of electronics and automation.

The instrument described in this manual may be operated only by personnel who are trained for their assigned task, in conformity to the instructions for such task and, specifically, to the safety warnings and precautions contained in such instructions.
Thanks to their training and experience, qualified personnel can recognize the risks inherent to the use of these products/systems and are able to avoid possible dangers.

Structure of this Manual

The instructions in this manual do not replace the safety instructions and the technical data for installation, configuration and programming applied directly to the product or the rules of common sense and safety regulations in effect in the country of installation.
For easier understanding of the controller's basic functions and its full potentials, the configuration and programming parameters are grouped according to function and are described in separate chapters.
Each chapter has from 1 to 3 sections:

- the first section presents a general description of the parameters described in detail in the following zones;
- the second section presents the parameters needed for the controller's basic applications, which users and/or installers can access clearly and easily, immediately finding the parameters necessary for quick use of the controller;
- the third section (ADVANCED SETTINGS) presents parameters for advanced use of the controller:
this section is addressed to users and/or installers who want to use the controller in special applications or in applications requiring the high performance offered by the instrument.

Some sections may contain a functional diagram showing interaction among the parameters described;

- terms used on other pages of the manual (related or supplemental topics) are shown in underlined italics and listed in the index (linked to IT support).
In each section, the programming parameters are shown as follows:
For reference:

1. ACPC-M refers to master module. A ACPC1 is by de-fault ACPC-M.
2. ACPC-E1 refers to expansion module 1. A ACPC2 would include ACPC-M (as module 1) and ACPC-E1 (as module 2)
3. ACPC-E2 refer to two expansion modules. A ACPC3 would include ACPC-M (as module 1) and ACPC-E2 (as module 2 and 3).

Communications

The modular power controller's flexibility permits replacement of previous-version such as Chromalox (ACPC), C 4 and $\mathrm{C} 4-\mathrm{IR}$ instruments without changing the control software in use.

Based on the chosen work mode (see MODBUS SERIAL COMMUNICATION), you can use the instrument in 2 different modes:

- ACPC compatible mode: as if there were at most 3 separate instruments (recommended for retrofitting projects and/ or replacement of damaged instruments);
- CF4/ACPC mode: as a single instrument with the same functions as at most 3 separate instruments, but with pos-sibility of interaction among the various parameters, inputs and outputs (recommended for new projects).
New shared parameters, are accessible for both modes and permit more advanced functions such as:
604
FLT.E
R/W
Digital Filter for Auxiliary Input
0.0...20.0 sec
0.1

In addition to having a CUSTOM group of parameters for dynamic addressing, ACPC mode lets you use a single communication network node in-stead of 4 nodes as in Compatible mode.
NOTE! When programming, keep in mind that the addresses (parameters) described in this manual exist 4 times, specified by address node (ID).

ACPC Compatible Mode Diagram

Serial Communication (Modbus)

There are two Modbus addressing modes for variables and configuration parameters:

- C4 compatible mode
- C4

The modes are selected with dip-switch-7.

C4 Compatible Mode (Dip-Switch—ON)

This lets you use supervision programs created for C4 modules.
Memory is organized into 4 groups:

- Zone 1 for the variables of the module ACPC-M
- Zone 2 for the variables of the module ACPC-E1
- Zone 3 for the variables of the module ACPC-E2

In each zone, the variables and parameters have the same address as a Geflex instrument; the value (Cod) set on the rotary switches corresponds to that of Zone 1 ; the values in the other zones, if expansions are present, are sequential.

Examples:

if the rotary switches have value 14 , node 14
addresses Zone 1 (ACPC-M), node 15 Zone 2 (CFWE1), node 16 Zone 3 (ACPC-E2).
The power Ou.P for Zone 1 has address Cod 2, the Ou.P for Zone 2 has address Cod+1, 2, etc...
Parameter out.5, which defines the function of output OUT 5 on the ACPC, has address Cod 611.

C4/ACPC Mode (Dip-Switch—OFF)

This lets you optimize the efficiency of serial communication by integrating 3 zones in the C4. Memory is organized into 4 groups: 3 already in C4-compatible mode, plus one group defined as custom:

- Custom (additional memory map for dynamic addresses)
- Zone 1 for the variables of the mudule ACPC-M
- Zone 2 for the variables of the mudule ACPC-E1
- Zone 3 for the variables of the mudule ACPC-E2

The custom group contains variables and parameters for a maximum of 120 words. The meaning of these words can be changed.
There is a single value (Cod) set on the rotary switches; i.e., one for each C4/ACPC instrument. To access the data in each zone, simply add an offset to the address (+1024 for Zone 1, +2048 for Zone 2, +4096 for Zone 3).

Words in the custom group have addresses $0, \ldots, 119$. The variables and parameters are defined by default. At addresses 200,...,319 we have words containing the value of the address of the corresponding variables or parameters. These addresses can be changed by the user, offering the ability to read/write data with multiword messages structured according to various supervision requirements.

NOTE: Protection of Maps 1-2. You have to write the value 99 on addresses 600 and 601 to enable change of the custom group (addresses 200... 319). This value is reset at each switch-on.
Examples:
you can access the Ou.P variable in Zone 1 with address Cod, $1+1024$ or address Cod, 11 custom variable 12 (address Cod, 211 has value $2+1024$);
you can access the Ou.P variable in Zone 2 with address Cod, 2+ 2048 or address Cod, 40 custom variable 41 (address Cod, 240 has value $2+2048$);
if you want to read the 3 powers in sequence at the first 3 addresses, set Cod, $200=1026$, Cod. $201=2050$, Cod,202 $=4098$.

Connection

Each ACPC has an optically isolated serial port RS485 (PORT 1) with standard Modbus protocol via connectors J8 and J9 (type RJ10).
You can insert a serial interface (PORT 2). There are various models based on the field bus required: Modbus, Profibus DP, CANopen and Ethernet.
This communication port (PORT 2) has the same Cod address as PORT 1.
The parameters for PORT 2 are bAu. 2 (select baudrate) and Par. 2 (select parity).
The Cod parameter (read only) shows the value of the node address, settable from 00 to 99 with the 2 rotary switches; the hexadecimal settings are reserved.
A parameter can be read or written from both communication ports (PORT 1 and PORT 2).

AWARNING

Changing the bAu (select baud-rate) and/or PAr (select parity) parameters may cause communication failure.
To set the bAu and PAr parameters, you have to run the Autobaud procedure described in the "Instruction and warnings" manual.

Installation of the "MODBUS" Serial Network

A network typically has a Master that "manages" communication by means of "commands" and Slaves that interpret these commands.
ACPC are considered Slaves to the network master, which is usually a supervision terminal or a PLC.
They are positively identified by means of a node ad-dress (ID) set on the rotary switches (tens + ones).
ACPC have a ModBus serial (Serial 1) and optional Fieldbus (Serial 2) serial (see order code) with one of the following
protocols: ModBus, Profibus, CANopen, Ethernet, EtherCAT and EthernetIP.

The following procedures are indispensable for the Modbus protocol.
For the remaining protocols, see the specific manuals.
ACPC modules have the following default settings:

- node address $=0(0+0)$
- speed Serial $1=19200$ bit/s
- parity Serial 1 = none
- speed Serial $2=19200 \mathrm{bit} / \mathrm{s}$
- parity Serial 2 = none

You can install a maximum of 99 ACPC modules in a serial network, with node address selectable from "01" to "99" in standard mode, or create a mixed ACPC/C4 network in C4 compatible mode in which each ACPC identifies 3 zones with sequential node address start-ing from the code set on the rotary switches.
In short, the valid rotary switch settings (tens + ones) are:

- $(0+0)=$ Autobaud Serial 1
- $(B+0)=$ Autobaud Serial 2

Communication Error

If Modbus communication between ACPC and Master node goes into timeout (settable in C.E.t parameter), you can force an output power value (C.E.P parameter of each zone) and transmit the alarm state to a relay output (rL.x parameters).

Inputs

INA ANALOG INPUT

The modular power controller has an analog input with the functionality of power control.

573	T明	R/W	Analog Input 1	Table of Analog Input		1
				0	Disable	
837*	TpRe	R/W	Analog Input 2	1	0...10V	1
*For models 400-600A Only				2	0...5V / Potentiometer	
844*	TP93	R/W	Analog Input 3	3	0... 20 mA	1
*For models 400-600A Only				4	4...20mA	

Scale Limits

Examples of LS.A and HS.A parameter settings

The default values (LS.A = 0.0 and $H S . A=100.0$) can be changed to obtain the required scale of the PV in engineering value corresponding to the minimum and maximum of the physical input $(\mathrm{V} / \mathrm{mA})$.
In automatic mode, the engineering value (PV) is attributed to power Ou.P for values between 0.0 and 100.0.

Since the 0...10V input range is reduced 80% above, the scale interval (HS.A - LS.A) must be extended downward so that the useful interval (100.0-0.0) is $80 \%(100.0 / 125.0=0.8)$.

Since the $0 . .10 \mathrm{~V}$ input range is reduced 90% below, the scale interval (HS.A - LS.A) must be extended upward so that the useful interval (100.0-0.0) is 90\% (100.0/111.1 $=0.9$).

Example:

$\mathrm{V}_{\mathrm{IN}}=0 . . .10 \mathrm{~V}$
tyP. $=1$
LS.A $=0.0$
$H S . A=100.0$

Example:
$\mathrm{V}_{\mathrm{IN}}=2 \ldots 10 \mathrm{~V}$
tyP. $=1$
LS. $A=-25.0$
$H S . A=100.0$

Example:

$\mathrm{V}_{\text {IN }}=0 . . .9 \mathrm{~V}$
tyP. $=1$
LS.A $=0.0$ HS.A $=111.1$

Offset Adjustment

577	OFGR	R/W	Offset connection for analog Input 1	-99.9...99.9		0.0
841	DFGRO	R/W	Offset connection for analog Input 2	-99.9...99.9		0.0
848	NFC日3	R/W	Offset connection for analog Input 3	-99.9...99.9		0.0

Read State

572	Inf	R	Value of the ingegneristico reading analog input 1
836	Infl	R	Value of the ingegneristico reading analog input 2
843	InR3	R	Value of the ingegneristico reading analog input 3

Advanced Settings

Input Filter

576	FTR	R/W	Low pass digital filter analog input 1	0.0...20.0 sec.		0.1
840	FTRO	R/W	Low pass digital filter analog input 2	0.0.. 20.0 sec.		0.1
847	FTR3	R/W	Low pass digital filter analog input 3	0.0...20.0 sec.		0.1

Functional Diagram

Current Value In Load

The RMS current value is read in variable Ld.A of each zone.

If zone 1 has a 3 -phase load, variable Ld.At contains the average value of the three RMS currents. The Ld.A of the first three zones contain the RMS current value on lines L1, L2 and L3, respectively.
Accuracy is better than 1% in start modes ZC, BF and HSC.

Accuracy is better than 3% in PA mode with conduction angle $>90^{\circ}$, and better than 10% for lower conduc-tion angles.
The circulating current in the load is acquired with a 0.2 ms sampling time.
In addition, there are the following parameters for a zone with single-phase load:
I.tA1 instantaneous ammeter value

I1on current with active control
o.tA1 ammeter input offset correction

Ft.tA ammeter input digital filter
There are also the following parameters if zone 1 has a three-phase load:
I.tA1, I.tA2 and I.tA3 instantaneous ammeter value on line L1, L2 and L3
I1on, I2on and I3on current with active control o.tA1, o.tA2 and o.tA3 ammeter input offset correction on line L1, L2 and L3

Ft.tA ammeter input digital filter
If diagnostics detects a fault condition on the load, the red ER LED will flash in synch with yellow LED O1 or O 2 or O 3 for the zone in question.

The condition POWER FAULT in OR with HB alarm can be assigned to an alarm or identified in the state of a bit in variables STATUS, STATUS1, STATUS2 and STATUS3.
In STATUS3 you can identify the condition that activated the POWER_FAULT alarm.
POWER_FAULT diagnostics is configurable with parameter hd.2, with which even just a part may be enabled

SSR SHORT SSR module in short circuit
NO VOLTAGE power failure or interrupted fuse
NO CURRENT due to SSR module open or fuse or load interrupted
For alarm HB (load partially interrupted), refer to the specific section of this manual.
The default value of the maximum limit or ammeter fullscale depends on the model:

Model	H.tA
40 A	80.0
60 A	120.0
100 A	200.0
150 A	300.0
200 A	400.0
250 A	500.0
300 A	600.0
400 A	800.0
600A	1200
External CT	1000.0

Scale Limits

746	LTH	R	Minimum limit of CT ammeter input scale（phase 1）		
747	LTRE	R	Minimum limit of CT ammeter input scale（phase 2）	with 3－Phase Load	
748	LTR3	R	Minimum limit of CT ammeter input scale（phase 3）	with 3－Phase Load	
405	HTR	R	Minimum limit of CT ammeter input scale（phase 1）		
413	HTRE	R	Minimum limit of CT ammeter input scale（phase 2）	with 3－Phase Load	
414	HTらき	R	Minimum limit of CT ammeter input scale（phase 3）	with 3－Phase Load	

Setting the Offset

220	日TR	R／W	Offset correction CT input （phase 1）	－99．9 ．．．99．9 Scale points		$\begin{gathered} 0.0 \\ \text { zone } 1 \end{gathered}$	$\begin{gathered} 0.0 \\ \text { zone } 2 \end{gathered}$	$\begin{gathered} 0.0 \\ \text { zone } 3 \end{gathered}$
415	gThe	R／W	Offset correction CT input （phase 2）	－99．9 ．．．99．9 Scale points	With 3－Phase Load	0.0		
416	9703	R／W	Offset correction CT input （phase 3）	$-99.9 \ldots 99.9$ Scale points	With 3－Phase Load	0.0		

External CT

339	RT明	R／W	Offset correction for external CT input	1．．． 655	$\begin{gathered} 200 \\ \text { zone } 1 \end{gathered}$	$\begin{gathered} 200 \\ \text { zone } 2 \end{gathered}$	$\begin{gathered} 200 \\ \text { zone } 3 \end{gathered}$

Read State

$\begin{gathered} 227 \\ 473-139-755 \end{gathered}$	ITRH	R	Instantaneous CT ammeter input value（phase 1）	
$\begin{aligned} & 490 \\ & 494 \end{aligned}$	TRE	R	Instantaneous CT ammeter input value（phase 2）	With 3－Phase Load
$\begin{aligned} & 491 \\ & 495 \end{aligned}$	1743	R	Instantaneous CT ammeter input value（phase 3）	With 3－Phase Load
468	I！ E月 $^{\text {a }}$	R	CT filtered ammeter input value with output activated（phase 1）	
498	12［日f	R	CT filtered ammeter input value with output activated（phase 2）	With 3－Phase Load
499	1307	R	CT filtered ammeter input value with output activated（phase 3）	With 3－Phase Load
709	TTRP	R	Peak ammeter input during phase softstart ramp	
716	［05F	R	Power factor in hundredths	
753	L	R	Current RMS on load	
754	LnRT	R	Current RMS on 3－phase load	

Advanced Settings

Input Filter

219 FT.TR R/W CT input digital filter
Sets a low pass filter on the CT auxiliary input, running
the average of values read in the specified time interval.
If $=0$, excludes the average filter on sampled values.

Functional Diagrams

Monophase load

Threephase load

$\left(^{*}\right)$ with 3-Phase, 2-Leg command the LdA value of zone 3 is gained like average of the Ld.A values of zones 1 and 2

Voltage Value on Load

RMS voltage is read in variable Ld.V of each zone. If zone 1 has a 3-phase load, variable Ld.V.t in the first zone contains the average RMS value of voltages on three load L1, L2 and L3.
Voltage on the load is acquired with sampling on each cycle, 20 ms at $50 \mathrm{~Hz}(16.6 \mathrm{~ms}$ at 60 Hz). Accuracy is better than 1%.

The istantaneous RMS voltage value and with activated output,for single zone can be read in the variables Ld.VIS and Ld.Von; Ld.Von values are filtered by Ft.tVL (with option VLOAD) or Ft.tV (without option VLOAD).
If the option VLOAD is not present, the Load RMS voltage value is calculated from the line voltage and from the output power values.

Read State

751	L. V. V	R	Voltage on load
710	L.E. V.	R	Load voltage instantaneous
711	L. VEA	R	Load voltage with output activated
752	LEV	R	R Voltage on 3-phase load

if the option VLOAD is present there are available the following parameters:

Scale Limit

439	LT. VL	R	Minimum limit of TV_LOAD voltmeter input scale
443	HT. VL	R	Maximum limit of TV_LOAD voltmeter input scale

Setting the Offset

444	OT. VL	R/W	Offset correction for TV_LOAD input	-99.9 ...99.9 scale points	$\begin{gathered} 0.0 \\ \text { zone } 1 \end{gathered}$	$\begin{gathered} 0.0 \\ \text { zone } 2 \end{gathered}$	$\begin{gathered} 0.0 \\ \text { zone } 3 \end{gathered}$

Advanced Settings

Input Filter

| 442 | FT.T VL. | RW | Digital filter ingress trans-
 former voltmetrics TV_LOAD | $0.0 . .20 .0 \mathrm{sec}$ | | 0.1 | 0.1 | 0.1 |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| zone 1 | zone 2 | zone 3 | | | | | | |

Functional Diagram

Single-Phase Load without VLOAD option

Single-Phase Load with VLOAD option

Functional Diagram

Three-Phase Load without VLOAD option

Three-Phase Load with VLOAD option

Line Voltage Value

There are the following parameters if zone 1 has a sin-gle-phase load:
I.tV1 instantaneous voltmeter value of line
I.VF1 filtered voltmeter value
o.tV1 voltmeter input offset correction

Ft.tV voltmeter input digital filter

There are the following parameters if zone 1 has a 3-phase load:
I.tV1, I.tV2 and I.tV3, the instantaneous voltmeter value on line L1, L2 and L3, respectively.
RMS voltage values refer to voltage between 1/L1 and 3/L2 terminals.
I.VF1, I.VF2 and I.VF3 filtered voltmeter value on line L1, L2 and L3
o.tV1, o.tV2 and o.tV3 voltmeter input offset correction on line L1, L2 and L3.
Each phase has a voltage presence check that shuts off the module in case of incorrect values.
3-phase loads have an imbalance diagnostic, with consequent shut-down of the load and signal via LEDs.

A "voltage status" parameter contains information on the status of line voltage, including mains frequency identified $50 / 60 \mathrm{~Hz}$.

3-phase loads have diagnostics for correct phase connection, lack of a voltage, or imbalance of the three line voltages.

Scale Limits

453	LTV	R	Minimum limit of TV voltmeter input scale (phase 1)			
454	LTVE	R	Minimum limit of TV voltmeter input scale (3-phase, 2-leg)		with 3-Phase Load	
455	LTVE	R	Minimum limit of TV voltmeter input scale (3-phase, 3-leg)		with 3-Phase Load	
410	HT V	R	Maximum limit of TV voltmeter input scale (phase 1)			with 3-Phase Load

Setting the Offset

411	OTH	R/W	Offset correction TV input (phase 1)	$-99.9 \ldots 99.9$ Scale points		0.0		
zone 1								0.0
:---:								
zone 2	\quad	0.0						
:---:								
zone 3								

Read State

$\begin{array}{r} 232 \\ 485 \end{array}$	ITH	R	Value of voltmeter input (phase 1)	
492	TTH2	R	Value of voltmeter input (3-phase, 2-leg)	With 3-Phase Load
493	1743	R	Value of voltmeter input (3-phase, 3-leg)	With 3-Phase Load
322	! VFI	R	Value Filtered of voltmeter input (phase 1)	
496	! VFE	R	Value Filtered of voltmeter input (3-phase, 2-leg)	With 3-Phase Load
497	! VFI	R	Value Filtered of voltmeter input (3-phase, 3-leg)	With 3-Phase Load

702			Voltage status	Table Voltage Status	
				Bit	
				0	frequency_warning
				1	10\% umbalanced_line_warning
				2	20\% umbalanced_line_warning
				3	30\% umbalanced_line_warning
				4	rotation 123_error
				5	triphase_missing_line_error
				6	60 Hz
315	FREG	E	Voltage frequnecy in tenths of Hz		

Advanced Settings

Input Filter

412	FTT I!	R/W	Digital filter for voltmeter transformer TV input	0.0 .. 20.0 sec	$\begin{gathered} 2.0 \\ \text { zone } 1 \end{gathered}$	$\begin{gathered} 2.0 \\ \text { zone } 2 \end{gathered}$	$\begin{gathered} 2.0 \\ \text { zone } 3 \end{gathered}$

Sets a low pass filter on the auxiliary TV input, running the average of values read in the specified time interval. If $=0$, excludes the average filter on sampled values.

Functional Diagram

Line Voltage Value Single Phase

Line Voltage Value 3-Phase

Variable I.tV1

Variable I.tV2

Power On Load

Power on the load in each zone is read in variable Ld.P and the corresponding energy value in variables Ld.E1 and Ld.E2.

These energy values show the value accumulated since the first power on or since the last reset (commands at bits 114 and 115); non-volatile memory is updated every two hours and the disconnection of the power off.

Load impedance in each zone is read in variable Ld.I.
If zone 1 has a 3-phase load, variable Ld.P.t shows power and Ld.I.t total impedance, the corresponding energy value in variables Ld.E1.t and Ld.E2.t.
Note that for loads such as IR lamps, impedance can vary greatly based on the power transferred to the load.

$\begin{gathered} 880 \\ 719 \text { LSW } \\ \text { only } \end{gathered}$	LDP	R	Power on load	Data in DWORD (32 bit) format for address 880* LSW data in WORD (16 bit) format for address 719*
$\begin{gathered} 882 \\ \begin{array}{c} 720 \text { LSW } \\ \text { only } \end{array} \end{gathered}$	L-APT	R	Power on Load 3-Phase	Data in DWORD (32 bit) format for address 882 LSW data in WORD (16 bit) format for address 720
749	L	R	Impedance on load	
750	LDT	R	Impedance on load 3-phase	
531	LDEt	R	Energy on load	Data in DWORD (32 bit) format
541	L84T	R	Energy on 3-phase load	Data in DWORD (32 bit) format
510	LDEC	R	Energy on load	Data in DWORD (32 bit) format
541	L 18	R	Energy on 3-phase load	Data in DWORD (32 bit) format
114 bit	LREI	R/W	$\begin{aligned} & \text { OFF = - } \\ & \text { ON = Reset Ld.E1 } \end{aligned}$	
115 bit	LHED	R/W	$\begin{aligned} & \text { OFF = - } \\ & \text { ON = Reset Ld.E1 } \end{aligned}$	

Functional Diagram

Single-phase load

Functional Diagram

3-phase load

(*) with BI-PHASE command the Ld.A value of zone 3 is gained like average of the Ld.A values of zones 1 and 2

Digital Inputs (40-300A Models)

There are always two inputs. Each input can perform various functions based on the setting of the following parameters:

Read State

$\begin{aligned} & 68 \\ & \text { bit } \end{aligned}$	State of Digital Input 1	R	OFF = Digital input 1 off R ON = Digital input 1 on	
$\begin{aligned} & 92 \\ & \text { bit } \end{aligned}$	State of Digital Input 2	R	OFF = Digital input 2 off R ON = Digital input 2 on	
$\begin{aligned} & 67 \\ & \text { bit } \end{aligned}$	State of Digital Input 3	R	OFF = Digital input 3 off R ON = Digital input 3 on	
317		R	Sate of INPUT DIG digital inputs	bit. 0 = state INDIG1 bit. 1 = state INDIG2 bit. 2 = state INDIGB
518	In.PWM	R	PWM input value	0.0...100.0\%

Functions Related to Digital Inputs

- MAN / AUTO controller \qquad
- LOC / REM.. see SETTING THE SETPOINT
- HOLD ... see HOLD FUNCTION
- Reset memory latch...................................... see GENERIC ALARMS AL1 .. AL4
- Select SP1 / SP2
see SETTINGS - Multiset
- Software OFF / ON
see SOFTWARE SHUTDOWN
- START / STOP Selftuning
see SELFTUNING
- START / STOP Autotuning
see AUTOTUNING
- Calibration of feedback reference
see FEEDBACK
- Calibration of HB alarm setpoint
see HB ALARM

Digital Inputs (400-600A Models)

There are always two inputs. Each input can perform various functions based on the setting of the following parameters:

385	TP聂	R/W	Defining type of digital inputs

Table defining type of digital inputs		
0	PNP Digital Inputs	
1	NPN or voltage-free contact digital inputs	

Advanced Settings

NOTE: if the digital input is used to command the power \% (Ou.P) on the load (PWM input function, diG = 7), it is important to set Timeout parameter PWm.t to a value equal to or higher than the period of the PWM control signal used to guarantee this reaction time even in static conditions of low input (Ou.P=0\%) or high input (Ou.P=100\%).

Timeout for PWM Input

| 356 | PWMt 1 | R/W | Timeout for PWM input 1 | $0.01 \ldots 10.00$ sec. | 1.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 357 | PWMt 2 | R/W | Timeout for PWM input 2 | $0.01 \ldots 10.00$ sec. | 1.00 |
| 362 | PWMt 3 | R/W | Timeout for PWM input 3 | $0.01 \ldots 10.00$ sec. | 1.00 |

Input Filter - PWM Input

Read State

$\begin{aligned} & 68 \\ & \text { Bit } \end{aligned}$	State of Digital Input 1	R	OFF = Digital input 1 off R ON = Digital input 1 on
$\begin{aligned} & 92 \\ & \text { Bit } \end{aligned}$	State of Digital Input 2	R	OFF = Digital input 2 off R ON = Digital input 2 on
$\begin{aligned} & 67 \\ & \text { Bit } \end{aligned}$	State of Digital Input 3	R	OFF = Digital input 3 off R ON = Digital input 3 on
$\begin{aligned} & 66 \\ & \text { Bit } \end{aligned}$	State of Digital Input 4	R	OFF = Digital input 4 off R ON $=$ Digital input 4 on

$\left.\begin{array}{|c|c|c|c|c|}\hline 317 & & \text { R } & \begin{array}{l}\text { bit.0 }=\text { state INDIG1 } \\ \text { bit.1 }=\text { state INDIG2 }\end{array} \\ \text { bit.2 }=\text { state INDIG3 } \\ \text { bit.2 }=\text { state INDIG4 }\end{array}\right]$

Functions Related to Digital Inputs

- MAN / AUTO controller. see AUTO/MAN CONTROL
- Reset memory latch see GENERIC ALARMS AL1 .. AL4
- Software OFF / ON see SOFTWARE SHUTDOWN
- Calibration of feedback reference see FEEDBACK
- Calibration of HB alarm setpoint see HB ALARM

Using a Function Associated with Digital Input and Via Serial

At power-on or on the leading edge of digital input 1 or 2, all zones assume the state set by the digital input. For each zone, this state can be changed by writing via serial.
The setting via serial is saved in eeprom (STATUS_W_EEP, address 698).

State A/B	Setting dIG. or dIG. 2	Address for writing via serial	
		Access at 16 bit	access at 1 bit
AUTO/MAN controller	1	word 305 bit 4	bit 1
LOC/REM setpoint (**)	2	word 305 bit 6	bit 10
SP1/SP2 setpoint (**)	5	word 305 bit 1	bit 75
ON/OFF software	6	word 305 bit 3	bit 11
STOP/START selftuning (**)	8	word 305 bit 2	bit 3
STOP/START autotuning (*) (**)	9	word 305 bit 5	bit 29

(*) continuous or one-shot
${ }^{* *}$) only for zone 1 (ACPC-
M)

Using a Function of Digital Input 1 to Enable at Software ON

Software ON can be configured either by enabling a digital input or by writing via serial. Enabling by digital input 1 (diG) is common to all zones, whereas enabling via serial is specific for each individual zone.

The ON/OFF setting via serial is saved in eeprom (STATUS_W_EEP, address 698 bit 3) for resetting of the condition at the next hardware power-on; use parameter P.On.t. to force software always ON or software always OFF at next power-on.

	Setting	Address for writing via serial	
		dIG	Access at 16 bit
	13	word 305 bit 3	access at 1 bit

Alarms

Generic Alarms AL1, AL2, AL3 and AL4

Four generic alarms are always available and can perform various functions.
Typically, alarm AL. 1 is defined as minimum and AL. 2 as maximum.
These alarms are set as follows:

- select the reference variable to be used to monitor the value (parameters A1.r, A2.r, A3.r and A4.r): the origin of the variable can be chosen from the process variable PV (generally linked to the main input), the ammeter input, the voltmeter input, the auxiliary analog input, or the active setpoint.
- set the value of the alarm setpoint (parameters AL.1, AL.2, AL. 3 and AL.4).
This value is used for comparison with the reference variable value: it can be absolute or indicate a shift from the variable in case of deviation alarm.
- set the hysteresis value for the alarm (parameters Hy.1, Hy.2, Hy. 3 and Hy.4):
the hysteresis value defines a band for safe re-entry of the alarm condition: without this band, the alarm would be deactivated as soon as the reference variable re-entered the setpoint limits, with the possibility of generating another alarm signal in the presence of oscillations of the reference signal around the setpoint value.

For AL1 reverse absolute alarm (low) with positive Hyst1, AL1 $\mathrm{t}=1$ (*) $=$ OFF
if disabled at switch on
For AL2 direct absolute alarm (high) with negative Hyst2, AL2 $\mathrm{t}=0$

For AL1 $=$ normal inverse deviation alarm with negative Hyst 1, AL1 $t=3$ For AL1 = normal direct deviation alarm with negative Hyst 1, AL1 $t=2$

- select alarm type:
- absolute/deviation: if the alarm refers to an absolute value or to another variable (for example, to the setpoint).
- direct/reverse: if the reference variable exceeds the alarm setpoint in the "same direction" as the control action or not. For example, the alarm is direct if the reference variable exceeds the upper setpoint value during heating or assumes values below the lower setpoint during cooling. In the same manner, the alarm is reverse if the reference variable assumes values below the lower setpoint during heating or exceeds the setpoint during cooling.
- normal/symmetrical: if band value is subtracted or added, respectively, to/from the upper and lower limit of the alarm setpoints or indicates a higher and lower band compared to the alarm setpoint.
- with/without disabling at switch-on: if you want to check the reference variable value at system switch-on or wait until the variable enters the control window.
- with/without memory: if the alarm signal persists even when the cause has been eliminated or stops when the variable returns to normal values.
The above concepts are better explained in the following figures:

For AL1 $=$ symmetrical inverse absolute alarm with Hyst1, AL1 $t=5$
For AL1 $=$ symmetrical direct absolute alarm with Hyst1, AL1 $\mathrm{t}=4$
Minimum hysteresis $=2$ scale points
Allarme relativo al setpoint di tipo simmetrico

For AL1 = Symmetrical inverse deviation alarm with Hyst 1, AL1 $t=7$ For AL1 $=$ Symmetrical direct deviation alarm with Hyst 1, AL1 $t=6$

Reference Variables

215	RHR	R/W	Select Reference Variable Alarm 1	Table of Alarm Reference Setpoints			0
				Type	Variable to be Compared	Reference Setpoint	
				0	PV (process variable)	AL	
216	HPR	R/W	Select Reference Variable Alarm 2	1	in.tA1 (In.tA1 OR In.tA2 OR In.tA3 With 3-phase load)	AL	0
217				2	In.tV1 (In.tV1 OR In.tV2 OR In.tV3 With 3-phase load)	AL	
	QIR	R/W	Select Reference Variable Alarm 3	3	SPA (active setpoint)	AL (absolute only)	
218				4	PV (variabile di processo)	AL (absolute only, refer to SP1 (with functional multiset)	0
	R4R	R/W	Select Reference Variable Alarm 4	5	In. 2 auxiliary input	AL	
				6	In. 3 auxiliary input	AL	
				7	In. 4 auxiliary input	AL	0
				8	In. 5 auxiliary input	AL	
				9	In.A analg input	AL	
				10	In.Pwm PWM input	AL	
				N.B. for codes $1,2,5,6,7,8,9$ and 10 the reference to the alarm is in scale points and not to the decimal point (dP.x)			

Alarm Setpoints

$\begin{gathered} 12 \\ 475-177 \end{gathered}$	Pt-	R/W	Alarm setpoint 1 (scale points)	-999... 999 if alarm symetrical $0 . . .999$ if alarm relative and symetrical	500
$\begin{gathered} 13 \\ 476-178 \end{gathered}$	PL己	R/W	Alarm setpoint 2 (scale points)	-999... 999 if alarm symetrical $0 . . .999$ if alarm relative and symetrical	100
$\begin{gathered} 14 \\ 52-479 \end{gathered}$	Rţ	R/W	Alarm setpoint 3 (scale points)	-999... 999 if alarm symetrical 0... 999 if alarm relative and symetrical	700
$\begin{aligned} & 58 \\ & 480 \end{aligned}$	PH4	R/W	Alarm setpoint 4 (scale points)	-999... 999 if alarm symetrical $0 . . .999$ if alarm relative and symetrical	800

Alarm Hysteresis

$\begin{aligned} & 27 \\ & 187 \end{aligned}$	HUH	R/W	Hysterisis for Alarm 1	± 999 Scale points	$0 . . .999$ sec. $\mathrm{Se}+32$ in A1.t 0... 999 min. Se +64 in A1.t	-1
$\begin{gathered} 30 \\ 188 \end{gathered}$	HUP	R/W	Hysterisis for Alarm 2	± 999 Scale points	$0 . . .999$ sec. Se +32 in A1.t 0... 999 min. Se +64 in A1.t	-1
$\begin{aligned} & 53 \\ & 189 \end{aligned}$	Hリ3	R/W	Hysterisis for Alarm 3	± 999 Scale points	$\begin{aligned} & \text { 0... } 999 \text { sec. Se }+32 \text { in A1.t } \\ & 0 . .999 \text { min. Se }+64 \text { in A1.t } \end{aligned}$	-1
59	H44	R/W	Hysterisis for Alarm 4	± 999 Scale points	$0 . . .999$ sec. Se +32 in A1.t $0 . . .999$ min. Se +64 in A1.t	-1

Alarm Type

406	明.	R/W	Alarm Type 1
407	RE. 7	R/W	Alarm Type 2
$\begin{aligned} & 408 \\ & (54) \end{aligned}$	R3. 7	R/W	Alarm Type 3
409	84	R/W	Alarm Type 4

Table of Alarm behavior				
AL.x.t	Direct (High Limit) Inverse (Low Limit)	Absolute Relative	Normal Symmetrical (Window)	
0	direct	absolute	normal	0
1	inverse	absolute	normal	0
2	direct	relative	normal	
3	inverse	relative	normal	0
4	direct	absolute	symmetrical	0
5	inverse	absolute	symmetrical	
6	direct	relative	symmetrical	0
7	inverse	relative	symmetrical	0
8				

- 8 to disable at switch-on until first setpoint
- 16 to enable memory latch
- 32 Hys becomes delay time for activation of alarm (0... 999 sec.) (excluding absolute symmetrical)
- 64 Hys becomes delay time for activation of alarm (0... 999 min.) (excluding absolute symmetrical)
- 136 to disable at switch-on or at change of setpoint until first setpoint
- 256 only for alarms with memory and delay time: the delay time becomes a timed hysteresis (with time stopped in case of SBR condition: when SBR condition disappears the delay time starts counting from zero)

46 bit	AL1 Direct/Inverse	R/W
47 bit	AL1 Absolute/Relative	R/W
48 bit	AL1 Normal/Symmetrical	R/W
49 bit	AL1 Disabled at Switch-On	R/W
50 bit	AL1 with Memory	R/W
54 bit	AL2 Direct/Inverse	R/W
55 bit	AL2 Absolute/Relative	R/W
56 bit	AL2 Normal/Symmetrical	R/W
57 bit	AL2 Disabled at Switch-On	R/W
58 bit	AL2 With Memory	R/W
36 bit	AL3 Direct/Inverse	R/W
37 bit	AL3 Absolute/Relative	R/W
38 bit	AL3 Normal/Symmetrical	R/W
39 bit	AL3 Disabled at Switch-On	R/W
40 bit	AL3 With Memory	R/W
70 bit	AL4 Direct/Inverse	R/W
71 bit	AL4 Normal/Symmetrical	R/W
72 bit	AL4 Normal/Symmetrical	R/W
73 bit	AL4 Disabled at Switch-On	R/W
74 bit	AL4 With Memory	R/W

Enable Alarms

195	H2.	R/W	Select Number of Enabled Alarms	Table of Enabled Alarms					
				AL.nr	Alarm 1	Alarm 2	Alarm 3	Alarm 4	0
				0	disabled	disabled	disabled	disabled	
				1	enabled	disabled	disabled	disabled	
				2	disabled	enabled	disabled	disabled	
				3	enabled	enabled	disabled	disabled	
				4	disabled	disabled	enabled	disabled	
				5	enabled	disabled	enabled	disabled	
				6	disabled	enabled	enabled	disabled	
				7	enabled	enabled	enabled	disabled	
				8	disabled	disabled	disabled	enabled	
				9	enabled	disabled	disabled	enabled	
				10	disabled	enabled	disabled	enabled	
				11	enabled	enabled	disabled	enabled	
				12	disabled	disabled	enabled	enabled	
				13	enabled	disabled	enabled	enabled	
			+16 to enable HB alarm	14	disabled	enabled	enabled	enabled	
			+32 to enable LBA alarm	15	enabled	enabled	enabled	enabled	

Reset Memory Latch

Read State

Functional Diagram

Loop Break Alarms

This alarm identifies incorrect functioning of the control loop due to a possible load break or to a short circuited or reversed probe.
With the alarm enabled (parameter AL.n), the instrument checks that in condition of maximum power delivered for a settable time (Lb.t) greater than zero,
the value of the process variable increase in heating or decreases in cooling: if this does not happen, the LBA alarm trips. In these conditions, power is limited to value (Lb.P).
The alarm condition resets if the temperature increases in heating or decreases in cooling.

Enable Alarm

Read State

8			
bit	State of LBA Alarm	R	OFF = LBA Alarm off ON = LBA Alarm on

Functional Diagram

HB Alarm (Heater Break Alarm)

This type of alarm identifies load break or interruption by measure the current delivered by means of a current transformer.
The following three fault situations may occur:

- delivered current is lower than nominal current: this is the most common situation, and indicates that a load element is breaking.
- delivered current is higher than nominal current: this situation occurs, for example, due to partial short circuits of load elements.
- delivered current remains significant even during periods in which it should be zero: this situation occurs in the resence of pilot circuits for the shortcircuited load or due to relay contacts soldered together. In these cases, prompt action is very important to prevent greater damage to the load and/ or to the pilot circuits.
In standard configuration, output SSR is associated to heating control in zone 1, obtained by modulating electrical power with the ON/OFF control based on the set cycle time.
The current read performed during the ON phase identifies an anomalous shift from the rated value due to a load break (first two fault situations described above), while the current read performed during the OFF phase identifies a break in the control relay, with consequent output always active (third fault situation).
The alarm is enabled by means of parameter AL.n; select the type of function you want by means of parameter Hb.F:
Hb.F=0: alarm activates if the current load value is below the setpoint value set in A.Hbx while the SSR control output is ON.
Hb.F=1: alarm activates if the current load value is above the setpoint value set in A.Hbx while the SSR control output is OFF.
Hb.F=2: alarm activates by combining functions 0 and 1, considering the setpoint of function 1 as 12% of the ammeter full scale defined in H.tAx.
Hb.F=3 or Hb.F=7 (continuous alarm): alarm activates due to a load current value below the setpoint value set in A.Hbx; this alarm does not refer to the cycle time and is disabled if the heating (cooling) output value is below 3\%.
Setting A.Hbx = 0 disables both types of HB alarm by forcing deactivation of the alarm state.
The alarm resets automatically if its cause is eliminated.
An additional configuration parameter for each zone, related to the HB alarm is:
Hb.t = delay time for activation of HB alarm, understood as the sum of times for which the alarm is considered active.

For example, with:

- Hb.F $=0$ (alarm active with current below setpoint value),
- Hb.t $=60$ sec and cycle time of control output $=10$ sec,
- power delivered al 60\%,
the alarm will activate after 100 sec (output ON for 6 sec each cycle);
if power is delivered at 100%, the alarm will activate after 60 sec .
If the alarm deactivates during this interval, the time sum is reset.
The delay time set in Hb.t must exceed the cycle time of the SSR output.
If zone 1 has a 3-phase load, you can set three different setpoints for the HB alarm:
A.Hb1 = alarm setpoint for line L1
A.Hb2= alarm setpoint for line L2
A.Hb3= alarm setpoint for line L3

Function: HB Alarm Setpoint Self-Learning

This function permits self-learning of the alarm setpoint.
To use this function, you first have to set parameter Hb.P, which defines the percentage of current compared to rated load below which the alarm trips.
The function can be activated via control from serial line, digital input (see parameter dIG or dIG.2) or by key (see HW/SW Information-Key Features).
When the Teach-in function is activated in modes ZC, BF and HSC, the RMS current value in conduction ON multiplied by parameter Hb.P determines the HB alarm setpoint.
When the Teach-in function is activated in mode PA NO infrared lamps, the existing RMS current value is shown at 100% of power, which, multiplied by parameter Hb.P, determines the HB alarm setpoint. Before activating the function, it is necessary that the ACPC is switched on with power, it is recommended, above 50\%.
In the case of HSC mode or PA for IR lamps (see parameter Hd. 5 option +128), the function activates automatic reading of the power/current curve useful for determining the HB alarm setpoint.

Automatic reading of the power/current curve takes place with the following sequence:

- softstart at maximum power (default 100\%), 5 sec. delay
- reduction of power to $50 \%, 30 \%, 20 \%, 15 \%, 10 \%$, $5 \%, 3 \%, 2 \%, 1 \%$, between every value 5 sec . delay
- return to normal operation.

Maximum conduction value in this phase can be limited by means of the PS. Hi parameter.

If requested, MUST be activated only with Hd.6=0 (the required Hd .6 value can be set only after calibration).
In case of HSC firng mode, the Heater Break alarm teach-in function doesn't calibrate at $5 \%, 3 \%, 2 \%$ and 1% in order to avoid
high peak currents due to the low impedence at very low temperature of the IR lamp filament.

Enable Alarm

195	Plif	R/W	Select number of enabled alarms					See Table of Enabled Alarms	0
57	HBF	R/W	HB Alarm Functions					Table of HB Alarm Functions	0
Default: SINGLE-PHASE LOAD: each A.HbX refers to its respective phase. 2-PHASE LOAD: single reference setpoint A.Hb1 and OR between phases 1, 2 and phases 3, 4. 3-PHASE LOAD: single reference setpoint A.Hb1 and OR among phases 1, 2 and 3. +8 HB reverse alarm +16 relates to single setpoints and singled phases WITH 3-PHASE LOAD							Val. 0 0 1 2 3 7	Description of functions Relay, logic output: alarm active at a load current value below set point for control output ON time. Relay, logic output: alarm active at a load current value above set point for control output OFF time. Alarm active if one of functions 0 and 1 is active (OR logic between functions 0 and 1) (*) Continuous heating alarm Continuous cooling alarm nimum setpoint is set at 12% of ammeter full scale	
56	HB.T	R/W	Delay	time f of HB	activation arm			The value must exceed the cycle time of the 0 ... 999 sec output to which the HB alarm is associated.	25.0
$\begin{aligned} & 112 \\ & \text { bit } \end{aligned}$	Calib setp	$\begin{aligned} & n \mathrm{HB} \\ & \mathrm{t} \text { for } \mathrm{Zc} \end{aligned}$	alarm ne	R/W	Delay time of HB	activa rm		NB: In case of 3-phase load, you can set a differ ue for parameter A.Hb1, A.Hb2, A.Hb3 for each (ex.: to control an unbalanced 3-phase load	ent zone

Alarm Setpoints

55	HHE	R／W	HB alarm setpoint（scale points ammeter input－Phase 1）		$\begin{gathered} 10.0 \\ \text { Zone } 1 \end{gathered}$	$\begin{gathered} 10.0 \\ \text { Zone } 2 \end{gathered}$	$\begin{gathered} 10.0 \\ \text { Zone } 3 \end{gathered}$
502	FHOE	R／W	HB alarm setpoint（scale points ammeter input－Phase 2）	With 3－p	10.0		
503	9483	R／W	HB alarm setpoint（scale points ammeter input－Phase 3）	With 3－	10.0		
737	Hop	R／W	Percentage HB alarm setpoint of current read in HB calibration	0．0 ．．．100．0\％	$\begin{gathered} 80.0 \\ \text { Zone } 1 \end{gathered}$	80.0 $\text { Zone } 2$	$\begin{gathered} 80.0 \\ \text { Zone } 3 \end{gathered}$
742	HRTR	R／W	CT read in HB calibration		$\begin{gathered} 0.0 \\ \text { Zone } 1 \end{gathered}$	$\begin{gathered} 0.0 \\ \text { Zone } 2 \end{gathered}$	$\begin{gathered} 0.0 \\ \text { Zone } 3 \end{gathered}$
452	HETV	R／W	TV read in HB calibration		$\begin{gathered} 0.0 \\ \text { Zone } 1 \end{gathered}$	$\begin{gathered} 0.0 \\ \text { Zone } 2 \end{gathered}$	$\begin{gathered} 0.0 \\ \text { Zone } 3 \end{gathered}$
743	Hep w	R／W	Ou．P power in calibration		$\begin{gathered} 0.0 \\ \text { Zone } 1 \end{gathered}$	$\begin{gathered} 0.0 \\ \text { Zone } 2 \end{gathered}$	$\begin{gathered} 0.0 \\ \text { Zone } 3 \end{gathered}$
758	RTR日	R／W	HB calibration with IR lamp current at 100\％conduction		$\begin{gathered} 0.0 \\ \text { Zone } 1 \end{gathered}$	$\begin{gathered} 0.0 \\ \text { Zone } 2 \end{gathered}$	$\begin{gathered} 0.0 \\ \text { Zone } 3 \end{gathered}$
759	促忶	R／W	HB calibration with IR lamp current at 50% conduction		$\begin{gathered} 0.0 \\ \text { Zone } 1 \end{gathered}$	$\begin{gathered} 0.0 \\ \text { Zone } 2 \end{gathered}$	$\begin{gathered} 0.0 \\ \text { Zone } 3 \end{gathered}$
760	IRTRE	R／W	HB calibration with IR lamp current at 30% conduction		$\begin{gathered} 0.0 \\ \text { Zone } 1 \end{gathered}$	$\begin{gathered} 0.0 \\ \text { Zone } 2 \end{gathered}$	$\begin{gathered} 0.0 \\ \text { Zone } 3 \end{gathered}$
761	RTR3	R／W	HB calibration with IR lamp current at 20\％conduction		$\begin{gathered} 0.0 \\ \text { Zone } 1 \end{gathered}$	$\begin{gathered} 0.0 \\ \text { Zone } 2 \end{gathered}$	$\begin{gathered} 0.0 \\ \text { Zone } 3 \end{gathered}$
767	IRTRU	R／W	HB calibration with IR lamp current at 15% conduction		$\begin{gathered} 0.0 \\ \text { Zone } 1 \end{gathered}$	$\begin{gathered} 0.0 \\ \text { Zone } 2 \end{gathered}$	$\begin{gathered} 0.0 \\ \text { Zone } 3 \end{gathered}$
768	RTR5	R／W	HB calibration with IR lamp current at 10\％conduction		$\begin{gathered} 0.0 \\ \text { Zone } 1 \end{gathered}$	$\begin{gathered} 0.0 \\ \text { Zone } 2 \end{gathered}$	$\begin{gathered} 0.0 \\ \text { Zone } 3 \end{gathered}$
769	IRTHE	R／W	HB calibration with IR lamp （only in mode PA） current at 5\％conduction		$\begin{gathered} 0.0 \\ \text { Zone } 1 \end{gathered}$	$\begin{gathered} 0.0 \\ \text { Zone } 2 \end{gathered}$	$\begin{gathered} 0.0 \\ \text { Zone } 3 \end{gathered}$
382	RTR7	R／W	HB calibration with IR lamp （only in mode PA） current at 3\％conduction		$\begin{gathered} 0.0 \\ \text { Zone } 1 \end{gathered}$	$\begin{gathered} 0.0 \\ \text { Zone } 2 \end{gathered}$	$\begin{gathered} 0.0 \\ \text { Zone } 3 \end{gathered}$
383	$1 \mathrm{RTH8}$	R／W	HB calibration with IR lamp （only in mode PA） current at 2\％conduction		$\begin{gathered} 0.0 \\ \text { Zone } 1 \end{gathered}$	$\begin{gathered} 0.0 \\ \text { Zone } 2 \end{gathered}$	$\begin{gathered} 0.0 \\ \text { Zone } 3 \end{gathered}$
384	RTR9	R／W	HB calibration with IR lamp （only in mode PA） current at 1\％conduction		$\begin{gathered} 0.0 \\ \text { Zone } 1 \end{gathered}$	$\begin{gathered} 0.0 \\ \text { Zone } 2 \end{gathered}$	$\begin{gathered} 0.0 \\ \text { Zone } 3 \end{gathered}$
445	保 V V	R／W	HB calibration with IR lamp Voltage at 100% conduction		$\begin{gathered} 0.0 \\ \text { Zone } 1 \end{gathered}$	$\begin{gathered} 0.0 \\ \text { Zone } 2 \end{gathered}$	$\begin{gathered} 0.0 \\ \text { Zone } 3 \end{gathered}$
446	促 V	R／W	HB calibration with IR lamp Voltage at 50% conduction		$\begin{gathered} 0.0 \\ \text { Zone } 1 \end{gathered}$	$\begin{gathered} 0.0 \\ \text { Zone } 2 \end{gathered}$	$\begin{gathered} 0.0 \\ \text { Zone } 3 \end{gathered}$
447	RT Ve	R／W	HB calibration with IR lamp Voltage at 30% conduction		$\begin{gathered} 0.0 \\ \text { Zone } 1 \end{gathered}$	$\begin{gathered} 0.0 \\ \text { Zone } 2 \end{gathered}$	$\begin{gathered} 0.0 \\ \text { Zone } 3 \end{gathered}$
448	片TV3	R／W	HB calibration with IR lamp Voltage at 20% conduction		$\begin{gathered} 0.0 \\ \text { Zone } 1 \end{gathered}$	$\begin{gathered} 0.0 \\ \text { Zone } 2 \end{gathered}$	$\begin{gathered} 0.0 \\ \text { Zone } 3 \end{gathered}$

449	RT WH	R/W	HB calibration with IR lamp Voltage at 15% conduction		$\begin{gathered} 0.0 \\ \text { Zone } 1 \end{gathered}$	0.0 Zone 2	$\left\lvert\, \begin{gathered} 0.0 \\ \text { Zone } 3 \end{gathered}\right.$
450	IRT VS	R/W	HB calibration with IR lamp Voltage at 10% conduction		$\begin{gathered} 0.0 \\ \text { Zone } 1 \end{gathered}$	0.0 Zone 2	$\begin{gathered} 0.0 \\ \text { Zone } 3 \end{gathered}$
451	RTVE	R/W	HB calibration with IR Iamp (only in mode PA) Voltage at 5\% conduction		$\begin{gathered} 0.0 \\ \text { Zone } 1 \end{gathered}$	0.0 Zone 2	0.0 Zone 3
390	RT Vi	R/W	HB calibration with IR lamp (only in mode PA) Voltage at 100% conduction		$\begin{gathered} 0.0 \\ \text { Zone } 1 \end{gathered}$	$\begin{gathered} 0.0 \\ \text { Zone } 2 \end{gathered}$	$\begin{gathered} 0.0 \\ \text { Zone } 3 \end{gathered}$
391	RT VB	R/W	HB calibration with IR lamp (only in mode PA) Voltage at 100% conduction		$\begin{gathered} 0.0 \\ \text { Zone } 1 \end{gathered}$	$\begin{gathered} 0.0 \\ \text { Zone } 2 \end{gathered}$	$\begin{gathered} 0.0 \\ \text { Zone } 3 \end{gathered}$
392	RT V9	R/W	HB calibration with IR lamp (only in mode PA) Voltage at 1% conduction		$\begin{gathered} 0.0 \\ \text { Zone } 1 \end{gathered}$	$\begin{gathered} 0.0 \\ \text { Zone } 2 \end{gathered}$	$\begin{gathered} 0.0 \\ \text { Zone } 3 \end{gathered}$

Read State

	Table of HB Alarm States
Bit	
0	HB TA2 time ON
1	HB TA2 time OFF
2	HB alarm TA2
3	HB TA3 time ON
4	HB TA3 time OFF
5	HB alarm TA3

512	R	States of alarm ALSTATE (for single-phase loads)			Table of alarm states ALSTATE	
					Bit	
					4	HB alarm time ON
					5	HB alarm time OFF
					6	HB alarm
318	R	States of alarm ALSTATE IRQ	States of alarm table			
			Bit			
			0	State AL. 1		
			1	State AL. 2		
			2	State AL. 3		
			3	State AL. 4		
			4	State AL.HB (if 3-phase or phase 1/2/3) or Power Fault		
			5	State AL.HB PHASE 1 (if 3-phase)		
			6	State AL.HB PHASE 2 (if 3-phase)		
			7	State AL.HB PHASE 3 (if 3-phase)		

Functional Diagram

NOTE:
the value of setpoint Hb .tr for the HB alarm is calculated in two dferent ways, depending on the selected function mode:

```
if ZC, BF, HSC mode:
```

\qquad

```
\[
\mathrm{Hb} . \operatorname{tr}=\mathrm{A} . \mathrm{Hb}
\]
if PA mode
``` \(\qquad\)
``` \(\mathrm{Hb} . \operatorname{tr}=\mathrm{A} . \mathrm{Hb} * \sqrt{(\text { Ou. } \mathrm{P})}\)
```

HB Calibration in modes ZC - BF - HSC

HB Calibration in mode PA

Power Fault Alarms (SSR Short, No_Voltage, SSR_Open and No_Current)

660	H23	R/W	Enable POWER_FAULT	Table of Power Fault Alarms				Zone 1	$\begin{gathered} 0 \\ \text { Zone } 2 \end{gathered}$	Zone 3
	HLE			Hd. 2	SSR Short	NO_VOLTAGE	NO_CURRENT			
				0						
				1	X					
				2		X				
				3	X	X				
				4						
				5	X					
				6		X				
				7	X	X				
				8			X			
				9	X		X			
				10		X	X			
				11	X	X	X			
				12			X			
				13	X		X			
				14		X	X			
				15	X	X	X			

661	D6. ${ }^{\text {T }}$	R/W	Refresh rate The alarm activate	SSR Short s after 3 faults.	1... 999 sec				0
662	16.F	R/W	Time filter for NO_{-} OPEN and NO_CU	OLTAGE, SSR RRENT alarms.	$\begin{gathered} 1 . . .999 \\ \text { sec } \end{gathered}$	Set a value not less than cycle time	$\begin{gathered} 10 \\ \text { Zone } 1 \end{gathered}$	$\begin{gathered} 10 \\ \text { Zone } 2 \end{gathered}$	$\begin{gathered} 10 \\ \text { Zone } 3 \end{gathered}$
$\begin{aligned} & 105 \\ & \text { bit } \end{aligned}$	Reset SSR SHORT / NO VOLTAGE / NO_CURRENT alarms			R/W					

Read State

96 bit	State of alarms SSR_SHORT phase 1	R
97 bit	State of alarms SSR_SHORT phase 2	R
98 bit	State of alarms SSR_SHORT phase 3	R
99 bit	State of alarms NO_VOLTAGE phase 1	R
100 bit	State of alarms NO_VOLTAGE phase 2	R
101 bit	State of alarms NO_VOLTAGE phase 3	R
102 bit	State of alarms NO_CURRENT phase 1	R
103 bit	State of alarms NO_CURRENT phase 2	R
104 bit	State of alarms NO_CURRENT phase 3	R

Overheat Alarm

Each power module has one temperature sensor for the internal heat sink and two additional temperature sensors connected to the LINE and LOAD terminals.

Temperature levels are shown in variables INNTC_SSR, INNTC_LINE and INNTC_LOAD.

The over_heat alarm trips when at least one of the temperatures exceeds a set threshold.
Is also saved in INNTC_SSR_MAX the maximum temperature reached by INNTC_SSR.

This condition may be caused by obstructed ventilation slits or by a stopped cooling fan.
With the over_heat alarm active, the control disables control outputs OUT1, OUT2 and OUT3.
There is an additional maximum temperature protection that hardware disables the SSR controls.

655	R	INNTC_SSR	$10.0 \ldots .120 .0^{\circ} \mathrm{C}$	Overheat Alarm
534	R	INNTC_LINE	$10.0 \ldots .120 .0^{\circ} \mathrm{C}$	Overheat Alarm
535	R	INNTC_LOAD	$10.0 \ldots .120 .0^{\circ} \mathrm{C}$	Overheat Alarm
679	R	INNTC_SSR_MAX	$0.0 \ldots .120 .0^{\circ} \mathrm{C}$	

Fuse_Open and Short_Circuit_Current Alarms

The FUSE_OPEN alarm trips when the internal high-of Fr.n attempts, beyond which it remains deactivated speed fuse (optional) blows or, on ACPC-Xtra models, while awaiting manual reset with front panel key BUT or when the overcurrent protection device switches off.
The SHORT_CIRCUIT_CURRENT alarm trips when peak current on the load exceeds the maximum limit (corresponding to twice the rating) during the softstart ramp or at first power-on (with softstart ramp disabled).

If configured (parameter Fr.n other than zero), the device restarts automatically in softstart for a maximum
with the control via serial (bit 109).
For ACPC-Xtra models, the number of times the over-current protection device switches off is shown in FO.c1 and FO.c2
The FO count. c1 can be reset via the command via serial (bit116).

456	FRT	R/W	Number of restarts in case of FUSE_OPEN / SHORT_CIRCUIT_CURRENT				0.0
$\begin{gathered} 109 \\ \text { bit } \end{gathered}$	RESET FUSE_OPEN /SHORT CIRCUIT_CURRENT ALARMS			R/W	OFF = - ON = Reset FUSE	/ SHORT_CIRCUIT_CURRENT alarms	
$\begin{gathered} 116 \\ \text { bit } \end{gathered}$	RESETTINGFOOI			R/W	OFF = - ON = Reset count F		

*Address 116 bit is 40-300A Only
Read State

634		R	State 4 (STATUS4)	Table of Instrument state 4
434^{*}	FOI	R	Counter 1: FUSE_OPEN events	
436^{*}	FGCD	R	Counter 2: FUSE_OPEN events	

[^0]
Overcurrent Fault Protection - 40 to 300A Models

This function eliminates the need for an external extrarapid fuse to protect the device. In case of load shortcircuit, the internal IGBT device is instantaneously switched off and the alarm status is signaled.

- The overcurrent fault protection function DOES NOT replace any of the safeties on the system (such as magnetothermic switches, delay fuses, etc.).
- These caracteristic protects the controller (and therefore also the load) by replacing the high-speed fuse needed to protect the control SCRs against faults (without creating any additional cost to replace the fuse and reducing machine downtime).
- The overcurrent fault protection has 2 function states:
- Normal (On-Off control of load power)
- Fuse-Open: ACPC is open (a short occurred during normal operation).

Outputs

The modular power controller has high flexibility in the assignment of functions to the physical outputs. As a result, the instrument can be used in sophisticated applications.
A function is assigned to each physical output in two steps: first assign the function to one of internal reference signals rL. 1 .. rL. 6 , and then attribute the reference signal to parameters out. 1 .. out. 10 (corresponding to physical outputs OUT1 ..OUT10).
In standard configuration, physical outputs Out1, Out2, Out3 perform the heating control function (Heat) for zone 1, zone 2 , and zone 3 , respectively; value 0 (function HEAT) is assigned to reference signals rL. 1 in each zone, and the following values to the output parameters: out. $1=1$ (output rL. 1 zone 1), out.2=2 (output rL. 1 zone 2), out.3=3 (output rL. 1 zone 3).
Physical outputs Out5, Out6, Out7, Out8 are optional, and the type (relay, logic, continuous or triac) is defined by the order code. In standard configuration, these outputs perform the cooling control function (Cool) for zone 1, zone 2, and zone 3, respectively. In this configuration, value 1 (function COOL) is assigned to reference signals rL. 2 in each zone, and the following values to the output parameters: out.5=5 (output rL. 2 zone 1), out. $6=6$ (output rL. 2 zone 2), out. $7=7$ (output rL. 2 zone 3).
Relay outputs Out9 and Out10 are always present, programmable by means of parameters out. 9 and out.10, to which available alarm signal functions are assigned by means of the four reference signals rL.3, rL.4, rL.5, rL. 6 in each zone.

Standard configuration has the following assignments: - reference signals: rL. $3=2$ (function AL1), rL. $4=3$ (function AL2), rL.5=4 (function AL3) and rL.6=5 (function AL.HB or POWER_FAULT with HB alarm).

- output parameters: out. $9=17$ and out. $10=18$.

In this way, the state of output physical Out9 is given by the logic OR of AL1, AL3 in each zone, and the state of output Out10 is given by the logic AND of AL2, AL.HB in each zone.
Each output can always be disabled by setting parameter out.x = 0 .
The state of outputs Out1, ..,Out10 can be acquired by serial communication by means of bit variables.
The following additional configuration parameters are related to the outputs:

Ct. 1 = cycle time for output rL. 1 for heating control (Heat) (see Settings section)
Ct. 2 = cycle time for output rL. 2 for cooling control (Cool) (see Settings section)
rEL = alarm states AL1, AL2, AL3, AL4 in case of broken probe, Err, Sbr (see Generic Alarms Section)

Allocation of Reference Signals

160	RL.!	R/W	Allocation of reference signal
163	RL.E	R/W	Allocation of reference signal

Table of Reference Signals		0 Zone 1	$\begin{gathered} 0 \\ \text { Zone } 2 \end{gathered}$	$\begin{gathered} 0 \\ \text { Zone } 3 \end{gathered}$
	Function			
0	HEAT (heating control output) / in case of continuous output $0 . . .20 \mathrm{~mA} / 0 . . .10 \mathrm{~V}$	$\begin{gathered} 1 \\ \text { Zone } 1 \end{gathered}$	$\begin{gathered} 1 \\ \text { Zone } 2 \end{gathered}$	$\begin{gathered} 1 \\ \text { Zone } 3 \end{gathered}$
1	COOL (cooling control output) / in case of continuous output $0 . . .20 \mathrm{~mA} / 0 . . .10 \mathrm{~V}$			
2	AL1 - alarm 1			
3	AL2 - alarm 2			
4	AL3-alarm 3			
5	AL.HB or POWER_FAULT with HB alarm (TA1 OR TA2 OR TA3)			
6	LBA - LBA alarm			
7	IN1 - repetition of logic input DIG1			
8	AL4 - alarm 4			
9	AL1 or AL2			
10	AL1 or AL2 or AL3			
11	AL1 or AL2 or AL3 or AL4			
12	AL1 and AL2			
13	AL1 and AL2 and AL3			
14	AL1 and AL2 and AL3 and AL4			
15	AL1 or AL.HB or POWER_FAULT with HB alarm (TA1 OR TA2 OR TA3)			
16	AL1 or AL2 or (AL.HB or POWER_FAULT) with HB alarm (TA1 OR TA2 OR TA3)			
17	AL1 and (AL.HB or POWER_FAULT) with HB alarm (TA1 OR TA2 OR TA3)			
18	AL1 and AL2 and (AL.HB or POWER_FAULT) with HB alarm (TA1 OR TA2 OR TA3)			
19	AL.HB - HB alarm (TA2)			
20	AL.HB - HB alarm (TA3)			
21	Setpoint power alarm			
22	AL.HB - HB alarm (TA1)			
23	POWER_FAULT			
24	IN2 - repetition of logic input DIG2			
64	HEAT (heating control output) with fast cycle time 0.1 ... 20.0sec. / in case of continuous output 4...20mA / 2...10V			
65	COOL (cooling control output) with fast cycle time 0.1 ... 20.0sec. / in case of continuous output $4 . . .20 \mathrm{~mA}$ / 2... 10 V			

						$\begin{gathered} \text { DIP } 5=\text { OFF } \\ \text { (Resistive load) } \end{gathered}$		
$\begin{gathered} 152^{*} \\ 9 \end{gathered}$	[7]	R/W	OUT 1 (Heat) cycle time	$\begin{gathered} 1 . . .200 \mathrm{sec} \\ (0.1 . .20 .0 \mathrm{sec}) \end{gathered}$	Set 0 for BF/HSC function See POWER CONTROL	$\begin{gathered} 0 \\ \text { Zone } 1 \end{gathered}$	$\begin{gathered} 0 \\ \text { Zone } 2 \end{gathered}$	$\begin{gathered} 0 \\ \text { Zone } 3 \end{gathered}$
						$\begin{gathered} \text { DIP } 5=\text { ON } \\ \text { (Inductive load) } \end{gathered}$		
						$\begin{gathered} 4 \\ \text { Zone } 1 \end{gathered}$	$\begin{gathered} 4 \\ \text { Zone } 2 \end{gathered}$	$\begin{gathered} 4 \\ \text { Zone } 3 \end{gathered}$
159*	[T.E	R/W	OUT 2 (Cool) cycle time	$\begin{gathered} 1 . . .200 \mathrm{sec} \\ (0.1 . .20 .0 \mathrm{sec}) \end{gathered}$		$\begin{gathered} 20 \\ \text { Zone } 1 \end{gathered}$	$\begin{gathered} 20 \\ \text { Zone } 2 \end{gathered}$	$\begin{gathered} 20 \\ \text { Zone } 3 \end{gathered}$

Read State

Allocation of Physical Outputs

607	막․	R/W	Allocation of physical output OUT 1
608	OUT.E	R/W	Allocation of physical output OUT 2
609	0073	R/W	Allocation of physical output OUT 3
610	안․․	R/W	Allocation of physical output OUT 4
611	0075	R/W	Allocation of physical output OUT 5
612	007.5	R/W	Allocation of physical output OUT 6
613	917.	R/W	Allocation of physical output OUT 7
614	OUTG	R/W	Allocation of physical output OUT 8
615	047.9	R/W	Allocation of physical output OUT 9
616	OUTH	R/W	Allocation of physical output OUT 10

	Table of output allocations	1
0	Output disabled	2
1	Output rL. 1 zone 1	
2	Output rL. 1 zone 2	3
3	Output rL. 1 zone 3	
4	Output rL. 1 zone 4	4
5	Output rL. 2 zone 1	
6	Output rL. 2 zone 2	5
7	Output rL. 2 zone 3	
8	Output rL. 2 zone 4	6
9	Output rL. 3 OR rL. 5 zone 1	
10	Output rL. 3 OR rL. 5 zone 2	7
11	Output rL. 3 OR rL. 5 zone 3	
12	Output rL. 3 OR rL. 5 zone 4	8
13	Output rL. 4 AND rL. 6 zone 1	
14	Output rL. 4 AND rL. 6 zone 2	9
15	Output rL. 4 AND rL. 6 zone 3	
16	Output rL. 4 AND rL. 6 zone 4	17
17	Output (rL. 3 OR rL.5) zone 1...zone 4	
18	Output (rL. 4 AND rL.6) zone 1...zone 4	
+32 to reverse output status only for Logic and Relay output		
NOTE: In 3-phase configuration, the state of physical output OUT1 is copied to OUT2 and OUT3. In case of auxiliary continuous outputs, the same output functions can not be used on other outputs.		18*
		$50^{* *}$

Read State

$\begin{aligned} & 82 \\ & \text { Bit } \end{aligned}$	State of output OUT 1	R	OFF = Output off ON = Active Output
$\begin{aligned} & 83 \\ & \text { Bit } \end{aligned}$	State of output OUT 2	R	OFF = Output off ON = Output on
$\begin{aligned} & 84 \\ & \text { Bit } \end{aligned}$	State of output OUT 3	R	OFF = Output off ON = Output on
$\begin{aligned} & 85 \\ & \text { Bit } \end{aligned}$	State of output OUT 4	R	OFF = Output off ON = Output on
$\begin{aligned} & 86 \\ & \text { Bit } \end{aligned}$	State of output OUT 5	R	$\begin{aligned} & \text { OFF = Output off } \\ & \text { ON = Output on } \end{aligned}$
$\begin{aligned} & 87 \\ & \text { Bit } \end{aligned}$	State of output OUT 6	R	$\begin{aligned} & \text { OFF = Output off } \\ & \text { ON = Output on } \end{aligned}$
$\begin{aligned} & 88 \\ & \text { Bit } \end{aligned}$	State of output OUT 7	R	$\begin{aligned} & \text { OFF = Output off } \\ & \text { ON = Output on } \end{aligned}$
$\begin{aligned} & 89 \\ & \text { Bit } \end{aligned}$	State of output OUT 8	R	$\begin{aligned} & \text { OFF = Output off } \\ & \text { ON = Output on } \end{aligned}$
$\begin{aligned} & 90 \\ & \text { Bit } \end{aligned}$	State of output OUT 9	R	$\begin{aligned} & \text { OFF = Output off } \\ & \text { ON = Output on } \end{aligned}$
$\begin{aligned} & 91 \\ & \text { Bit } \end{aligned}$	State of output OUT 10	R	$\begin{aligned} & \text { OFF = Output off } \\ & \text { ON = Output on } \end{aligned}$

Functional Diagram

Analog Outputs - 400 to 600A Models

The 3 optional analog outputs let you retransmit the value of analog quantities. The engineering value of the quantity is limited to the set scale values and a reparameterization is applied based on the type of output selected.

Example 1:

To retransmit the current of the ACPC-M load with range 0-600 A with output Analog1 (0-10V), set: tP.AO1=2, rF.AO1=17, LS.AO1 = 0,0 A, HS.AO1 = 600,0 A

Example 2:

To retransmit the power of the single-phase load of the ACPC-M with range $0-500 \mathrm{~kW}$ with output Analog1 ($0-20 \mathrm{~mA}$), set: tP.AO1=0, rF.AO1=21, LS.AO1 $=0.0 \mathrm{~kW}, \mathrm{HS} . \mathrm{AO} 1=500.0 \mathrm{~kW}$

865	TPRH	R/W	Output type analog 1
866	TPROE	R/W	Output type analog 2
867	TPP昭	R/W	Output type analog 3

Table of Analog output types		1
0	0... 20 mA output	
1	4 ... 20 mA output	
2	$0 . . .10 \mathrm{~V}$ output	
3	2... 10 V output	
	+16 Inverse output	

868	RFPG	R/W	Attribution reference output analog 1
869	RFPGE	R/W	Attribution reference output analog 2
870	RFRH3	R/W	Attribution reference output analog 3

Table of Reference Signals		Scale Setting limits			0
		Min	Max	Limit of Meas.	
0	NONE	0	65535	-	0
1	Ou.P (control output) of ACPC-M	0.0	100.0	\%	
2	Ou.P (control output) of ACPC-E1	0.0	100.0	\%	0
3	Ou.P (control output) of ACPC-E2	0.0	100.0	\%	
4	In.A1 (analog input 1)	0.0	100.0	\%	
5	In.A2 (analog input 2)	0.0	100.0	\%	
6	In.A3 (analog input 3)	0.0	100.0	\%	
7	In.PWM1 (PWM 1 input)	0.0	100.0	\%	
8	In.PWM2 (PWM 2 input)	0.0	100.0	\%	
9	In.PWM3 (PWM 3 input)	0.0	100.0	\%	
10	I.VF1 (line voltage) of ACPC-M	0.0	6553.5	V	
11	I.VF1 (line voltage) of ACPC-E1	0.0	6553.5	V	
12	I.VF1 (line voltage) of ACPC-E2	0.0	6553.5	V	
13	Ld.V (voltage on load) of ACPC-M	0.0	6553.5	V	
14	Ld.V (voltage on load) of ACPC-E1	0.0	6553.5	V	
15	Ld.V (voltage on load) of ACPC-E2	0.0	6553.5	V	
16	Ld.V.t (voltage on 3-phase load)	0.0	6553.5	V	
17	Ld.A (current on load) of ACPC-M	0.0	6553.5	A	
18	Ld.A (current on load) of ACPC-E1	0.0	6553.5	A	
19	Ld.A (current on load) of ACPC-E2	0.0	6553.5	A	
20	Ld.A.t (current on 3-phase load)	0.0	6553.5	A	
21	Ld.P (power on load) of ACPC-M	0.0	6553.5	kW	
22	Ld.P (power on load) of ACPC-E1	0.0	6553.5	kW	
23	Ld.P (power on load) of ACPC-E2	0.0	6553.5	kW	
24	Ld.P.t (power on 3-phase load) Serial	0.0	6553.5	kW	
25	line value	0.0	6553.5	-	

Controls

Automatic / Manual Control

By means of the digital input function you can set the controller in MAN (manual) and set the control output to a constant value changeable by means of communication.
When returning to AUTO (automatic), if the variable is within the proportional band, switching is bumpless.

* 400 to 600A Models only

Manual Power Correction

With this function (available on models with CV diagnostics option), you can run a correction of power delivered in manual based on the reference line voltage (riF). The \% value of the (Cor) is freely settable and acts in inverse proportion.
The function is activated/deactivated by means of parameter SP.r.
Example: with the following settings: $\mathrm{Cor}=10 \%$; riF = 380; SP.r = value +8 ; instrument in manual; line voltage 380 VAC, manual power set at 50%, following a 10% increase in line voltage, $380 \mathrm{~V}+10 \%(380 \mathrm{~V})=418 \mathrm{~V}$, there is a decrease in set manual power equal to the same \% of change: $50 \%-10 \%(50 \%)=45 \%$.
To use this function, the controller must have a CT (current transformer) and a VT (voltage transformer). N.B.: the \% change in manual power is limited to the value set in parameter "Cor".
The maximum manual power correction is limited to $\pm 65 \%$.

| 505 | RHF | R/W | $0.0 \ldots 999.9$ | 0.0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Compensation of the voltage transformer read to maintain output power at a constant level.

506	FIR	R/W	Correction of manual power based on line voltage	0.0 ... 100.0 \%			0.0
$\begin{gathered} 18 \\ 136-249 \end{gathered}$	5PR	R/W	Remote setpoint (SET gradient for manual power correction)	Setpoint Table			0
					Type of Remote Set	Absolute/Deviation	
				0	Digital (from serial line)	Absolute	
				1	Digital (from serial line)	Deviation local set (_SP o SP1 o SP2)	
				+4 set gradient in digit/sec. +8 correction of manual power based on line voltage +16 disable saving of local setpoint _SP +32 disable saving of local manual power (at switchoff returns to last value saved)			

Start Mode

$699 \mathrm{PanT}^{-1}$ R/W \quad Start modes at Power-On

0^{*}	Function at previous state
1	Software shutdown
2	Software startup

(*) digital input states always have priority

Software Shutdown

Running the software shutdown procedure causes the following:

1) Reset of Autotuning, Selftuning and Softstart.
2) Digital input enabled only if assigned to SW shutdown function.
3) In case of switch-on after SW shutdown, any ramp for the set (set gradient) starts from the PV.
4) Outputs OFF: except for signals them of reference rL. 4 and rL. 6 that they come forced ON
5) Reset of HB alarm.
6) Reset of LBA alarm.
7) The Heat and Cool bit on the state word STATUS and POWER are reset.
8) At shutdown, the current power is saved. At switch-on, integral power is recalculated as the difference between saved power and proportional power; this calculation is defined as "desaturation at switch-on."
9) In case of Geflex, the state of alarms (AL1...AL4, ALHBTA1...ALHBTA3) is reset.
10) Alarms AL 1... AL 4 can be enable or disable through the parameter oFF.t.

140	OH5	R/W	Digital Input Function		See: Table of digital input functions	0.0
618	CHE	R/W	Digital Input 2 Function			0.0
$\begin{aligned} & 11 \\ & \text { bit } \end{aligned}$	SOFTWARE LAUNCH/SHUTDOWN		R/W	$\begin{aligned} & \mathrm{OFF}=\mathrm{ON} \\ & \mathrm{ON}=\mathrm{OFF} \end{aligned}$		

* for 400 to 600A Models only

Read State

Other Functions

Fault Action Power (40 to 300A Only)

You can decide what power to supply in case of broken probe.
FAP is the reference power for parameter FAP.
Average power is the average power calculated in the last 300 sec.

The alarm reset and reference power update take place only at switch-on or after a setpoint change.

The alarm is not activated if the control (Ctr) is ON/OFF type, during Selftuning and in Manual.

265	HBT	R/W	Select Specialized Control Functions	See: Hot runners table - Setpoint Settings	0	
228	FRP	R/W	Fault Action Power (supplied in conditions of broken probe)	$-100.0 . .100 .0 \%$		0.0

Read State

26	HB ALARM STATE OR	R	OFF = Alarm off ON = Alarm on
bit	POWER_FAULT		OFF = Alarm off
80	State of Power alarm	R	ON = Alarm on bit

Power Alarm

The alarm signals any power changes (OuP) after the process variable (PV) has stabilized on the setpoint (SP). The time beyond which the process variable is considered stable is 300 sec .
The reference power update take place only at switchon or after a setpoint change.

If the process variable leaves the stabilization band after the first stabilization, this does not influence the alarm.

In case of SBR:

- if the PV has not yet stabilized, either the average power over the last 5 minutes or FAP power is supplied (depending on the setting of the HOT parameter).
- if the PV has stabilized the average power over the last 5 minutes is supplied.

Function:

If necessary, assign an output (rL.2...6) for the power alarm.
Set the band (b.ST) within which the process variable is considered stable after 300 sec . have elapsed.
Set the band (b.PF) outside which the alarm is activated after time PF.t has elapsed.

The reference power is the active power after 300 sec. have elapsed.
The alarm reset and reference power update take place only at switch-on or after a setpoint change.

The alarm is not activated if the control（Ctr）is ON／OFF type，and in Manual．

The parameters for alarm power are：

261	85	R／W	Stability Band（specialized control alarm power function）	0.0 ．．．100．0 \％f．s．			0.0
262	BPF	R／W	Alarm Power Band（specialized control alarm power function）	0.0 ．．． 100.0 \％			0.0
260	PFT	R／W	Delay Time for alarm power activation（specialized controls）	$0 . . .999 \mathrm{sec}$			0
160	RLI	R／W	Allocation of reference signal	See：Generic alarms－Table of reference signals	$\begin{gathered} 0 \\ \text { Zone } 1 \end{gathered}$	Zone 2	$\begin{gathered} 0 \\ \text { Zone } 3 \end{gathered}$
＊40 to 300A models only							
163	R2己	R／W	Allocation of reference signal		$\begin{gathered} 1 \\ \text { Zone } 1 \end{gathered}$	$\begin{gathered} 1 \\ \text { Zone } 2 \end{gathered}$	$\begin{gathered} 1 \\ \text { Zone } 3 \end{gathered}$
＊40 to 300A models only							
166	R23	R／W	Allocation of reference signal－OR output		$\stackrel{2}{2} \text { Zone } 1$	$\stackrel{2}{\text { Zone } 2}$	$\stackrel{2}{\text { Zone } 3}$
170	勋 4	R／W	Allocation of reference signal－ AND Output		$\begin{gathered} 35 \\ \text { Zone } 1 \end{gathered}$	$\begin{gathered} 35 \\ \text { Zone } 2 \end{gathered}$	$\begin{gathered} 35 \\ \text { Zone } 3 \end{gathered}$
171	RLS	R／W	Allocation of reference signal－OR output		$\begin{gathered} 4 \\ \text { Zone } 1 \end{gathered}$	$\begin{gathered} 4 \\ \text { Zone } 2 \end{gathered}$	$\begin{gathered} 4 \\ \text { Zone } 3 \end{gathered}$
172	勋 6	R／W	Allocation of reference signal－ AND Output		$\begin{gathered} 160 \\ \text { Zone } 1 \end{gathered}$	$\begin{gathered} 160 \\ \text { Zone } 2 \end{gathered}$	$\begin{gathered} 160 \\ \text { Zone } 3 \end{gathered}$

Heating Output (Fast cycle)

For outputs rL. 1 (Out 1) and rL. 2 (Out 2) you can set a fast cycle time ($0.1 \ldots 20 \mathrm{sec}$) by setting the parameter to 64 (Heat) or 65 (Cool).

160	R!	R/W	Allocation of reference signal	See: Generic alarms -Table of reference signals		0 Zone 1	$\begin{gathered} 0 \\ \text { Zone } 2 \end{gathered}$	0 Zone 3
163	RLコ	R/W	Allocation of reference signal			1 Zone 1	1 Zone 2	1 Zone 3
$\begin{gathered} 152 \\ 9 \end{gathered}$	ET.	R/W	OUT 1 (Heat) cycle time	$\begin{gathered} 1 . . .200 \mathrm{sec} \\ (0.1 \ldots 20 \mathrm{sec}) \end{gathered}$	Set 0 for GTT function 2 See POWER CONTROL			2

400 to 600A Models only.

Operating Hour Meter

The device shows in OH . c (Operating Hours Counter) the number of operating hours (line voltage present and nonzero power); updating in non-volatile memory occurs every two hours and the disarming of the line voltage.

						$\begin{gathered} \text { DIP } 5 \text { = OFF } \\ \text { (Resistive load) } \end{gathered}$		
$\begin{gathered} 152^{*} \\ 9 \end{gathered}$	[7]	R/W	OUT 1 cycle time	$\begin{gathered} 1 . . .200 \mathrm{sec} \\ (0.1 \ldots 20.0 \mathrm{sec}) \end{gathered}$	(*)	$\begin{gathered} 0 \\ \text { Zone } 1 \end{gathered}$	0 Zone 2	0 Zone 3
				*Set to 0 for BF/HSC functions See power management		DIP 5 = ON (Inductive load)		
						$\begin{gathered} 4 \\ \text { Zone } 1 \end{gathered}$	$\begin{gathered} 4 \\ \text { Zone } 2 \end{gathered}$	$\begin{gathered} 4 \\ \text { Zone } 3 \end{gathered}$

Power Control

SSR Control Modes

On Modality:

The ACPC has the following power control modes:

- PA modulation via variation of phase angle
- ZC, BF, HSC modulation via variation of number of conduction cycles with zero crossing trigger.
PA phase angle: this mode controls power on the load via modulation of the phase angle.
ZC zero crossing: this type of operation reduces EMC emissions. This mode controls power on the load via a series of conduction ON and non conduction OFF cycles.
The cycle time is constant and can be set from 1 to 200 sec (or from 0.1 to 20.0 sec).
BF burst firing: this mode controls power on the load via a series of conduction ON and non conduction OFF cycles. The ratio of the number of ON cycles to OFF cycles is proportional to the power value to be supplied to the load. The repeat period or cycle time is kept to a minimum for each power value.

Parameter bF.Cy defines the minimum number of conduction cycles, settable from 1 to 10.

In case of 3-phase load without neutral or closed delta, BF.Cy >= 5 has to be set to ensure correct operation (balancing of current in the 3 loads).

HSC Half Single Cycle: this mode corresponds to a BF that includes ON and OFF half-cycles. It is useful for reducing flicker with short-wave IR loads (and is applied only to single-phase or 3-phase with neutre or open delta loads).

Start mode is set with parameter Hd. 5
Control of maximum rms current (whose value is set in parameter Fu.tA) can always be enabled with parameter Hd. 5 in every power-on mode.
The cycle time can be set with two different resolutions in seconds or tenths of a second based on the type of heat or cool function assigned to outputs rL1 and rL2. The use of short cycle times ($<2-3 \mathrm{sec}$) is always recommended in case of control with SSRs.)

(*) $\begin{aligned} & \text { Hd. } 5=133 \quad \text { For ACPC with Control Option = } \\ & 0 \text { Hd. } 5=141 \quad \text { Option for ACPC with current }\end{aligned}$
limit Control option =1 or 2 or 3

+ 32 only for ZC/BF modes: enable delay triggering
+ 64 linear phase Softstart in power
+128 phase Softstart for IR lamps
+ 256 phase Softstart for shutdown in software ON/OFF switching

Dip 5 - OFF
Resistive Load

133/141	133/141	133/141
Zone 1	Zone 2	Zone 3

Dip 5				ON Inductive Load
32	32	32		
Zone 1	Zone 2	Zone 3		

SOFTSTART or START RAMP

This type of start can be enabled either in phase control or pulse train mode and acts via control of the conduction angle. It is enabled with parameter Hd.5.
The softstart ramp starts from a zero conduction angle and reaches the angle set in parameter PS.HI in the time set in parameter PS.tm, from 0.1 to 60.0 sec.
With parameter Hd. 5 (+64), you can configure a linear softstart in power, i.e., starting from zero you reach the power value corresponding to the maximum conduction angle set in PS.HI. Softstart ends before the set time if power reaches the corresponding value set in manual control or calculated by PID.

Control of maximum peak current can be enabled with parameter Hd. 5 during the ramp phase; peak value is settable in parameter PS.tA. This function is useful in case of short circuit on the load of loads with high temperature coefficients to automatically adjust start time to the load.

The softstart ramp activates at the first start after pow-er-ON and after a software reboot. It can be reactivated via software control by writing bit 108 or automatically if there are OFF conditions for a time exceeding the one settable in PS.oF (if $=0$ the function is as if disabled).
The ramp can also be enabled with parameter Hd. 5 (+256) after a software shutdown, i.e., zero is reached in the set time from delivered power.

630*	P5H	R/W	Maximum phase of phase softstart ramp		0.0 ...100.0\%				$\begin{aligned} & 100.0 \\ & \text { zone } 1 \end{aligned}$		$\begin{aligned} & 100.0 \\ & \text { zone } 2 \end{aligned}$	$\begin{gathered} 100.0 \\ \text { zone } 3 \end{gathered}$
705*	PSTM	R/W	Duration of phase softstart ramp		0.1 ...60.0 s				$\begin{gathered} 10.0 \\ \text { zone } 1 \end{gathered}$		$\begin{gathered} 10.0 \\ \text { zone } 2 \end{gathered}$	$\begin{gathered} 10.0 \\ \text { zone } 3 \end{gathered}$
629*	P50F	R/W	Min. non-conduction time to reactivate phase softstart ramp		$0 \ldots 999$ s				$\stackrel{2}{\text { zone } 1}$		$\begin{gathered} 2 \\ \text { zone } 2 \end{gathered}$	$\begin{gathered} 2 \\ \text { zone } 3 \end{gathered}$
706*	P57R	R/W	Maximum peak current limit	0.0 ...999.9 A	Model 40A		60A	100A	150A	200A	A 250 A	300A
					$\begin{aligned} & \text { Default Zone } \\ & 1 . . .3 \text { ACPC } \end{aligned}$	110.0	170.0	280.0	420.0	560.0	0700.0	840.0
					$\begin{gathered} \text { Default Zone } \\ 1 \ldots 3 \\ \text { CFWxtra } \end{gathered}$	110.0	170.0	230.0				

108* bit	Restart of phase softstart ramp	R/W	OFF = Restart not enabled ON = Restart enabled
106^{*} bit	State of phase softstart ramp	R	OFF = Ramp not active ON = Ramp active
107^{*}	State of phase bit	R	OFF = Ramp not ended Softstart ramp

NB: In case of a 3-phase load, you can set a diferent value from parameter PS.tA for each zone (ex. to control an unbalanced 3-phase load).

Delay Triggering

In firing modes $Z C$ and $B F$, with inductive loads, this function inserts delay triggering in the first cycle.
The delay is expressed in degrees settable in parameter dL.t, from 0 to 90 degrees. The function is enabled with parameter Hd. 5 (+32).

The function activates automatically if there are OFF conditions for a time exceeding the one settable in dL.oF (if $=0$ the function is as if disabled).

- Optimized Delay-Triggering value for transformer monophase: 60°
- Optimized Delay-Triggering value for 3-phase transformer: $90^{\circ}, 90^{\circ}, 40$

60	60	60
zone 1	zone 2	zone 3

Feedback Modes

The ACPC has the following power control modes:
V-voltage
V2-squared voltage
I-current
I2-squared current
P-power
A control mode is enabled with parameter Hd.6.

Voltage feedback (V)

To keep voltage on the load constant, this compensates possible variations in line voltage with reference to the rated voltage saved in riF.V. (expressed in Vrms).
The voltage value maintained on the load is (ref.V*P\%_ pid_man/100) and is indicated in the Modbus 757 register.

Voltage feedback (V2)

To keep voltage on the load constant, this compensates possible variations in line voltage with reference to the rated voltage saved in riF.V. (expressed in Vrms).
The voltage value maintained on the load is (rif.V* V ($\mathrm{P} \%$ _pid_man/100)), and is indicated in the Modbus 757 register.
Current feedback (I)
To keep current on the load constant, this compensates possible variations in line voltage and/or variations in load impedance with reference to the rated current saved in riF.I. (expressed in Arms).
The current value maintained on the load is (rif.l* $\mathrm{P} \%$ _ pid_man/100), and is indicated in the Modbus 757 register.
Current feedback (I2)
To keep current on the load constant, this compensates possible variations in line voltage and/or variations in load impedance with reference to the rated current saved in riF.I. (expressed in Arms).
The current value maintained on the load is (rif.I* V (P\%_pid_man/100)), and is indicated in the Modbus 757 register.

Power feedback \mathbf{P}

To keep power on the load constant, this compensates both variations in line voltage and variations in load impedance with reference to the rated power saved in riF.P. (expressed in kWatt).
The current value maintained on the load is (rif. $\mathrm{P}^{*} \mathrm{P} \%$ _ pid_man/100), and is indicated in the Modbus 757 register.

IMPORTANT!

Feedback calibration can be activated from the digital input (parameters DIG and DIG.2) or by serial control (ref. bit113), and if requested MUST be activated only with Hd.6=0 (the required Hd. 6 value can be set only after calibration) and preferably with maximum power on the load (ex. P_man or P_pid at 100\%).

If you change function mode (PA, ZC, BF, HSC), you have to re-run the Feedback calibration procedure.

Voltage V (or current I or power P) feedback corrects the \% of conduction with a maximum settable value in parameter Cor. V (or Cor.I or Cor. P).

For non-linear loads (ex.: Super Kanthal or Silicon Carbide) the automatic calibration procedure is NOT NECESSARY. Set the value of parameters ref. V, ref. I, ref. P based on the specific nominal of the load shown on the data-sheet (ref. ACPC Installation Guide).

Read State

Heuristic Control Power

It is useful to be able to limit the delivery of total power to the loads in order to avoid input peaks from the sin-gle-phase power line.
This condition occurs during switch-on phases when the machine is cold; the demand for heating power is 100% until temperatures near the setpoint are reached. It is also useful to avoid simultaneity of conduction when there is ON-OFF modulation for temperature maintenance.
The cycle time must be identical for all zones; the power percentage for each zone is limited to that necessary to maintain current within set limits.
This function acts by enabling the control to search for the most appropriate input combinations.

Example 1:

4 loads 380V- 32A (zone 1), 16A (zone 2), 25A (zone 3), 40A (maximum current is 73A in case of simultaneity of conduction).
Current limit I.HEU=50A.
The following combinations of conduction are possible: (to define the number of combinations, remember that the combinations without repetitions are $=n!/(k!*(n-$ k)!)
$11+\mid 2=48 \mathrm{~A}$
$11+13=57 A$
$12+I 3=41 A$
$11+12+13=73 A$

The combinations corresponding to current values below the limit value are:
$\mathrm{I} 1+\mathrm{I} 2=48 \mathrm{~A}$
$12+13=41 A$
The one with lower current is given by zone 2 \& zone 3. In the single cycle time for the enabled zones, the delivery of power may be reduced to respect the maximum current limit.

The time distribution for activation of the zones is calculated at the start of each cycle:
Ptot $=\mathrm{P} 1+\mathrm{P} 2$ (if P2>P3) + P3 (if P3>P2)
Simultaneity is allowed for zones 2 and 3 .

If $P 1=100 \%, P 2=100 \%, P 3=100 \%$
Ptot $=200 \%$; since Ptot $>100 \%$, the conduction time of the zone x is obtained by Px * (100/Ptot)
P1,2,3 delivered $=100 \%{ }^{*} 0.5=50 \%$

If $\mathrm{P} 1=100 \%, \mathrm{P} 2=50 \%, \mathrm{P} 3=0 \%$
Ptot $=150 \%$; since Ptot $>100 \%$, the conduction time of the zone x is obtained by Px * (100/Ptot)
$P 1$ delivered $=100 \% * 0.66=67 \%$
P 2 delivered $=50 \% * 0.66=33 \%$
P3 delivered $=0 \% * 0.66=0 \%$

Table for enabling heuristic power			
	Zone 1	Zone 2	Zone 3
0			
3	X	X	
5	X	X	
6	X	X	
7	X	X	X

NOTE: Only for ACPC with CTs present and outputs OUT1...OUT3 with slow cycle time

681 HEU \quad R/W | Maximum current for heuristic |
| :---: |
| power control |

$0.0 \ldots 999.9 \mathrm{~A}$		0.0
$(40$ to 300A Models $)$		
$0.0 \ldots 3275.0 \mathrm{~A}$		
$(400$ to 600A Models $)$		

Heterogeneous Power Control

This function matches that of a thermal cutout that disconnects the load based on instantaneous input. The load is disconnected based on a preset priority.

Zone 1 has priority: in case of overload, zone 3 is disconnected, followed by zone 2, etc.

682	H84	R/W	Enable hetergogeneous power control	Table for enabling heterogeneous power				0
					Zone 1	Zone 2	Zone 3	
				0				
				1	X			
				2	X			
				3	X	X		
				4	X			
				5	X	X		
				6	X	X		
				7	X	X	X	
683	HET	R/W	Maximum current for hetergogeneous power control		$\begin{array}{r} . .999 . \\ 300 \mathrm{~A} \mathrm{M} \end{array}$			0.0
					$\begin{aligned} & .3275 \\ & \hline 600 \mathrm{~A} \\ & \hline \end{aligned}$			

Virtual Instrument Control

Virtual instrument control is activated by means of parameter hd.1.

By setting parameters S.In and S.Ou you can enable the writing of some parameters via serial line, set the value of inputs and the state of outputs.
You have to enable alarm setpoints AL1, ..., AL4 when write operations are continuous, and you don't have to keep the last value in eeprom.

Enabling the PV input means being able to exclude the local Tc or RTD acquisition and replace it with the value written in the register VALUE_F.
Enabling digital input IN lets you set the state of this input, for example to run MAN/AUTO switching with the writing of bit 7 in the register V_IN_OUT.
Likewise, you can set the on/off state of outputs OUT1, ..., OUT10 and of the LEDs by writing bits in the register V_IN_OUT.

Parameter	Bit	Resource Enabled	Address of Image Register	Format	Name of Register
S.In	0	Alarm setpoint AL1	341	word	AL1_RAM
	1	Alarm setpoint AL2	342	word	AL2_RAM
	2	Alarm setpoint AL3	343	word	AL3_RAM
	3	Alarm setpoint AL4	321	word	AL4_RAM
	4	Input In. 1	347	word	SERIAL IN1
	6	Input In. 2	348	word	SERIAL IN2
	7	Input In. 3	578	word	SERIAL IN3
	8	Input In. 4	579	word	SERIAL IN4
	9	Input In. 5	580	word	SERIAL IN5
	10	Input In.TA	581	word	SERIAL INA
$\mathrm{S} . \mathrm{Ou}$	0	Output OUT 1	344	word, bit 0	V_IN_OUT
	1	Output OUT 2	344	word, bit 1	V_IN_OUT
	2	Output OUT 3	344	word, bit 2	V_IN_OUT
	4	Output OUT 5 (relays)	344	word, bit 4	V_IN_OUT
	4	Output OUT 5 (continuous)	639	word	SERIAL_OUT5C*
	5	Output OUT 6 (relays)	344	word, bit 5	V_IN_OUT
	5	Output OUT 6 (continuous)	640	word	SERIAL_OUT6C*
	6	Output OUT 7 (relays)	344	word, bit 6	V_IN_OUT
	6	Output OUT 7 (continuous)	641	word	SERIAL_OUT7C*
	7	Output OUT 8 (relays)	344	word, bit 7	V_IN_OUT
	7	Output OUT 8 (continuous)	642	word	SERIAL_OUT8C*
	8	Output OUT 9	344	word, bit 8	V_IN_OUT
	9	Output OUT 10	344	word, bit 9	V_IN_OUT
S.LI	0	Led RN	351	word, bit 0	V_X_LEDS
	1	Led ER	351	word, bit 1	V_X_LEDS
	2	Led D1	351	word, bit 2	V_X_LEDS
	3	Led D2	351	word, bit 3	V_X_LEDS
	4	Led O1	351	word, bit 4	V_X_LEDS
	5	Led O2	351	word, bit 5	V_X_LEDS
	6	Led O3	351	word, bit 6	V_X_LEDS
	7	Led O4	351	word, bit 7	V_X_LEDS
	8	Input D1	344	word, bit 10	V_IN_OUT
	9	Input D2	344	word, bit 11	V_IN_OUT

Hardware \& Software Information (40 to 300A Models)

The following data registers can be used to identify the controller HW/SW and check its operation.

122	UPE	R	Software version code
85	ERR	R	Self-diagnosis error code for auxiliary input
606	ERE	R	Self-diagnosis error code for auxiliary input 2
550	ER3	R	Self-diagnosis error code for auxiliary input 3
551	ER4	R	Self-diagnosis error code for auxiliary input 4
552	ER5	R	Self-diagnosis error code for auxiliary input 5
190	CHE	R	Hardware configuration codes

	Table of main input errors
0	No Error
1	Lo (Process variable value < Lo.S)
2	Hi (Process variable value $>$ Hi.S)
3	ERR (third wire interrupted for PT100 or input val- ues below minimum limits (ex. for TC with connec- tion error)
4	SBR (Probe interrupted or input values beyond maximum limits

Table of hardware configuration codes

bit	
0	$=1$ OUTPUT COOL absent
1	$=1$ OUTPUT COOL relay
2	$=1$ OUTPUT COOL logic
3	$=1$ OUTPUT COOL continuous $0 . . .20 \mathrm{~mA} / 0 . . .10 \mathrm{~V}$
4	$=1$ OUTPUT COOL triac 250Vac 1A
5	-
6	$=$ ACPC-M no power
7	$=1$ ACPC-M 40A
8	$=1$ ACPC-M 60A
9	$=1$ ACPC-M 100A
10	$=1$ ACPC-M 150A
11	$=1$ ACPC-M 200A
12	$=1$ ACPC-M 250A
13	$=1$ ACPC-M Xtra

508 [HEH \quad R \quad| Hardware configuration |
| :---: |
| codes 1 |

Table of hardware configuration codes 1	
bit	
0	$=1$ INPUT AUX absent
1	$=1$ INPUT AUX TC $/ 60 \mathrm{mV}$
2	-
3	$=1$ FIELDBUS ETH4 (ProfiNet)
4	$=1$ FIELDBUS ETH5 (Ethernet IP)
5	$=1$ FIELDBUS ETH6
6	$=1$ FIELDBUS absent
7	$=1$ FIELDBUS Modbus
8	$=1$ FIELDBUS Profibus
9	$=1$ FIELDBUS CanOpen
10	$=1$ FIELDBUS
11	$=1$ FIELDBUS Ethernet
12	$=1$ FIELDBUS Euromap66
13	$=1$ FIELDBUS ETH3
14	$=1$ FIELDBUS ETH2 (Ethercat)
15	$=1$ FIELDBUS ETH1 (Ethernet Real Time)

543	CHED	R	Hardware configuration codes 2	Table of hardware configuration codes 2	
				bit	
				0	= 1 ACPC-E1 no power
				1	= 1 ACPC-E1 40A
				2	= 1 ACPC-E1 60A
				3	= 1 ACPC-E1 100A
				4	= 1 ACPC-E1 150A
				5	= 1 ACPC-E1 200A
				6	= 1 ACPC-E1 250A
				7	= 1 ACPC-E1 Xtra
				8	= 1 ACPC-E2 no power
				9	= 1 ACPC-E2 40A
				10	= 1 ACPC-E2 60A
				11	= 1 ACPC-E2 100A
				12	= 1 ACPC-E2 150A
				13	= 1 ACPC-E2 200A
				14	= 1 ACPC-E2 250A
				15	= 1 ACPC-E2 Xtra
543	CHE3	R	Hardware configuration codes 3		Table of hardware configuration codes 3
				bit	
				0	$=1$ ACPC-M 300A
				1	= 1 ACPC-E1 300A
				2	= 1 ACPC-E2 300A

Hardware \& Software Information (400 to 300A Models)

The following data registers can be used to identify the controller HW/SW and check its operation.

122	UP昂	R	Software version code		
190	[HE	R	Hardware configuration codes		Table of hardware configuration codes
				bit	
				0	= 1 OUTPUT AUX absent
				1	= 1 OUTPUT AUX relay
				2	= 1 OUTPUT AUX logic
				5	$=1$ OUTPUT AUX continuous 12bit $20 \mathrm{~mA} / 10 \mathrm{~V}$
				6	= ACPC-M no power
				7	$=1$ ACPC-M 200A
				8	$=1$ ACPC-M 400A
				9	$=1$ ACPC-M 600A
				10	$=-$
				11	= -
				12	= -
				13	= -
				14	= 1 EXTERNAL CT (for all models: $1 \mathrm{PH} / 2 \mathrm{PH} / 3 \mathrm{PH}$)
				13	$=1$ ACPC-M Xtra
				12	$=1$ ACPC-M 250A

508	[HEH	R	Hardware configuration codes 1	Table of hardware configuration codes 1	
				bit	
				2	-
				3	= 1 FIELDBUS ETH4 (ProfiNet)
				4	= 1 FIELDBUS ETH5
				5	= 1 FIELDBUS ETH6
				6	= 1 FIELDBUS absent
				7	= 1 FIELDBUS Modbus
				8	= 1 FIELDBUS Profibus
				9	= 1 FIELDBUS CanOpen
				10	= 1 FIELDBUS DeviceNet
				11	= 1 FIELDBUS Ethernet
				12	= 1 FIELDBUS Euromap66
				13	= 1 FIELDBUS ETH3
				14	= 1 FIELDBUS ETH2 (Ethercat)
				15	= 1 FIELDBUS ETH1 (Ethernet IP)

543	CHEC	R	Hardware configuration codes 2	Table of hardware configuration codes 2	
				bit	
				0	= 1 ACPC-E1 no power
				1	= 1 ACPC-E1 200A
				2	= 1 ACPC-E1 400A
				3	$=1$ ACPC-E1 600A
				4	= -
				5	= -
				6	= -
				7	= -
				8	= 1 ACPC-E2 no power
				9	= 1 ACPC-E2 200A
				10	= 1 ACPC-E2 400A
				11	= 1 ACPC-E2 600A
				12	= -
				13	= -
				14	= -
				15	$=-$

$\begin{aligned} & 693 \\ & 697 \end{aligned}$	UPDF	R	Fieldbus software version
695	COHF	R	Fieldbus node
696	BRHLF	R	Fieldbus baudrate

| Profibus | | Canopen | | Eithernet | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| bAu.F | baudrate | bAu.F | baudrate | bAu.F | baudrate |
| 0 | $12.00 \mathrm{Mbit} / \mathrm{s}$ | 0 | $1000 \mathrm{Kbit} / \mathrm{s}$ | 0 | $100 \mathrm{Mbit} / \mathrm{s}$ |
| 1 | $6.00 \mathrm{Mbit} / \mathrm{s}$ | 1 | $800 \mathrm{Kbit} / \mathrm{s}$ | 1 | $10 \mathrm{Mbit} / \mathrm{s}$ |
| 2 | $3.00 \mathrm{Mbit} / \mathrm{s}$ | 2 | $500 \mathrm{Kbit} / \mathrm{s}$ | | |
| 3 | $1.50 \mathrm{Mbit} / \mathrm{s}$ | 3 | $250 \mathrm{Kbit} / \mathrm{s}$ | | |
| 4 | $500.00 \mathrm{Kbit} / \mathrm{s}$ | 4 | $125 \mathrm{Kbit} / \mathrm{s}$ | | |
| 5 | $187.50 \mathrm{Kbit} / \mathrm{s}$ | 5 | $100 \mathrm{Kbit} / \mathrm{s}$ | | |
| 6 | $93.75 \mathrm{Kbit} / \mathrm{s}$ | 6 | $50 \mathrm{Kbit} / \mathrm{s}$ | | |
| 7 | $45.45 \mathrm{Kbit} / \mathrm{s}$ | 7 | $20 \mathrm{Kbit} / \mathrm{s}$ | | |
| 8 | $19.20 \mathrm{Kbit} / \mathrm{s}$ | 8 | $10 \mathrm{Kbit} / \mathrm{s}$ | | |
| 9 | $9.60 \mathrm{Kbit} / \mathrm{s}$ | | | | |

622	185	R/W	Function of LED O1	Table of OUT LED functions		1
				0	Disabled	
623	L.56	R/W	Function of LED O2	1	Repetition of state OUT 1	
				2	Repetition of state OUT 2	2
				3	Repetition of state OUT 3	
624	Lワ7	R/W	Function of LED O3	4	State key	3
				5	Repetition of state OUT 5	
625			Function of LED Button	6	Repetition of state OUT 6	
	1.88	R/W		7	Repetition of state OUT 7	
				8	Repetition of state OUT 8	4
				9	Repetition of state OUT 9	
				10	Repetition of state OUT 10	
				+ 16	LED flashing if active	

LED status refers to the corresponding parameter,

 with the following special cases:- LED RN (green) on: hotkey functionality
- LED RN (green) + LED ER (red) both flashing rapidly: autobaud in progress
- LED ER (red) on: error in one of main inputs (Lo, Hi, Err, Sbr)
- LED ER (red) flashing: temperature alarm ((OVER_ HEAT or TEMPERATURE_SENSOR_BROKEN) or alarm of SHORT_CIRCUIT_CURRENT or SSR_ SAFETY or FUSE_OPEN (only for singlephase configuration).
- LED ER (red) + LED Ox (yellow) both flashing: HB alarm or POWER_FAIL in zone x
- All LEDs flashing rapidly: ROTATION123 alarm (only for threephase configuration)
- All LEDs flashing rapidly except LED DI1: jumper configuration not provided
- All LEDs flashing rapidly except LED DI2: 30\%_UNBALANCED_ERROR alarm (only for threephase configuration)
- All LEDs flashing rapidly except LED O1: SHORT_ CIRCUIT_CURRENT alarm (only for threephase configuration)
- All LEDs flashing rapidly except LED O2: TRIPHASE_MISSING_LINE_ERROR alarm (only for threephase configuration)
- All LEDs flashing rapidly except LED O3: SSR_ SAFETY alarm (only for threephase configuration)
- All LEDs flashing rapidly except LED BUT: FUSE_ OPEN alarm (only for threephase configuration)
$\left.\begin{array}{|c|c|c|}\hline \text { 305* } & \text { R/W } & \text { Current state (STATUS_W) } \\ \hline 698 & & \text { R }\end{array} \begin{array}{c}\text { State saved in eeprom } \\ \text { (STATUS_W_EEP) }\end{array}\right]$

$\|c\| c\|c\| c \mid$	0			
Table of state settings		Zone 1	Zone 2	Zone 3
Bit		0	0	0
0	-	Zone 1	Zone 2	Zone 3

467^{*}	R	State (STATUS)

	Table of State
bit	
0	AL. 1 or AL. 2 or AL. 3 or AL. 4 or ALHB.TA1 or ALHB.
1	TA2 or ALHB.TA3 or Power Fault
2	Input Lo
3	Input Hi
4	Input Sbr
5	heat
6	cool
7	LBA
8	AL. 1
9	AL. 2
10	AL.3
11	AL. 4
12	ALHB or Power Fault
13	ON/OFF
14	AUTO/MAN
15	LOC/REM

469^{*}	R	State 1 (STATUS 1)

Table of State 1	
bit	
0	AL. 1 or AL. 2 or AL.3 or AL.4 or ALHB.TA1 or ALHB.
1	TA2 or ALHB.TA3 or Power Fault
2	Input Lo Hi
3	Input Err
4	Input Sbr
7	LBA
8	AL. 1
9	AL.2
10	AL.3
11	AL.4
12	ALHB.TA1
13	ALHB.TA2
14	ALHB.TA3
15	Selftuning active
14	AUTO/MAN
15	LOC/REM

Functional Diagram

LED BUT (yellow) off
3-phase configuration
All LEDs flash rapidly except for
LED BUT (yellow) FUSE_OPEN alarm
oppure
LED 01 (yellow)SHORT_CIRCUIT_CURREN T alarm

bit	
0	frequency_warning
1	10\% unbalanced_line_warning
2	20\% unbalanced_line_warning
3	30% unbalanced_line_warning
4	rotation123_error
5	three-phase_missing_line_error
6	60 Hz

Instrument Configuration Sheet (40 to 300A Models)

Programmable Parameters

Definition of Parameter	Note	Assigned Value

Installation of Modbus Serial Network

Analog Input

Main Input

400	Tup	R/W	Probe, signal, enable, custom linearization and main input scale		
403	np5	R/W	Decimal point position for input scale		
401	105	R/W	Min. scale limit for main input		
402	HH5	R/W	Max. scale limit for main input		
519 23	OFS	R/W	Main input offset correction		
$\underset{470}{0}$	PV	R/W	Read of process variable (PV) engineering value		
349	DPV	R	Read of engineering value of process variable (PV) filtered by FLd		
85	ERR	R	Self-diagnosis error code for main input		
24	FLT	R/W	Iow pass digital filter for input signal		

179	FLB	R/W	Digital filter on oscillations of input signal		
86	5.00	R/W	Engineering value attributed to Point 0 (min. value of input scale)		
87	5.01	R/W	Engineering value attributed to Point 1		
88	5.02	R/W	Engineering value attributed to Point 2		
89	5.83	R/W	Engineering value attributed to Point 3		
90	5.84	R/W	Engineering value attributed to Point 43		
91	5.05	R/W	Engineering value attributed to Point 5		
92	5.06	R/W	Engineering value attributed to Point 6		
93	5.07	R/W	Engineering value attributed to Point 7		
94	5.08	R/W	Engineering value attributed to Point 8		
95	5.09	R/W	Engineering value attributed to Point 9		
96	5.16	R/W	Engineering value attributed to Point 10		
97	5.11	R/W	Engineering value attributed to Point 11		
98	5.12	R/W	Engineering value attributed to Point 12		
99	5.13	R/W	Engineering value attributed to Point 13		
100	5.14	R/W	Engineering value attributed to Point 14		
101	5.15	R/W	Engineering value attributed to Point 15		
102	5.16	R/W	Engineering value attributed to Point 16		
103	5.17	R/W	Engineering value attributed to Point 17		
104	5.18	R/W	Engineering value attributed to Point 18		
105	5.19	R/W	Engineering value attributed to Point 19		
106	5.20	R/W	Engineering value attributed to Point 20		
107	5.라	R/W	Engineering value attributed to Point 21		

108	5.2己	R/W	Engineering value attributed to Point 22		
109	5.23	R/W	Engineering value attributed to Point 23		
110	5.24	R/W	Engineering value attributed to Point 24		
111	5.25	R/W	Engineering value attributed to Point 25		
112	5.26	R/W	Engineering value attributed to Point 26		
113	5.27	R/W	Engineering value attributed to Point 27		
114	5.28	R/W	Engineering value attributed to Point 28		
115	5.29	R/W	Engineering value attributed to Point 29		
116	5.30	R/W	Engineering value attributed to Point 30		
117	5.31	R/W	Engineering value attributed to Point 31		
118	5.32	R/W	Engineering value attributed to Point 32 (max. value of input scale)		
293	5.33	R/W	Engineering value attributed to minimum value of the input scale		
294	5.34	R/W	Engineering value attributed to maximum value of the input scale.		
295	5.35	R/W	Engineering value of input signal corresponding to temp. of $50^{\circ} \mathrm{C}$.		

Load Current Value

746＊	LTH	R	Minimum limit of CT ammeter input scale（phase 1）		
747	LTRE	R	Minimum limit of CT ammeter input scale（phase 2）		
748	－TRコ	R	Minimum limit of CT ammeter input scale（phase 3）		
405	HTH	R	Minimum limit of CT ammeter input scale（phase 1）		
413	HTRE	R	Minimum limit of CT ammeter input scale（phase 2）		
414	HTらコ	R	Minimum limit of CT ammeter input scale（phase 3）		
220	明㫛	R／W	Offset correction CT input （phase 1）	0.0 zone 2	$\begin{gathered} 0.0 \\ \text { zone } 3 \end{gathered}$
415	ロTRE	R／W	Offset correction CT input （phase 2）		
416	口TR3	R／W	Offset correction CT input （phase 3）		

| 227 |
| :---: | :---: | :---: | :---: | :---: |
| $473-139$ | 隹

Value of Load Voltage

751＊	LT．V	R	Voltage on load
710＊	LR．V5	R	Load voltage instantaneous
711＊	LI．VAF	R	Load voltage with output activated
752	L－\％	R	Voltage on 3－phase load

Line Voltage Value

Power On Load

719*	LIP	R	Power on load
720	L APT	R	Power on Load 3-Phase
749*	LR	R	Impedance on load
750	L明	R	Impedance on load 3-phase
531	LIEE	R	Energy on load
541	L 847	R	Energy on 3-phase load
510	LnEE	R	Energy on load
541	LDAT	R	Energy on 3-phase load
114 bit** $^{\text {a }}$	LDEt	R/W	```OFF = - ON = Reset Ld.E1```
115* bit	LDEC	R/W	$\begin{aligned} & \text { OFF = - } \\ & \text { ON = Reset Ld.E1 } \end{aligned}$

Digital Input

Generic Alarms AL1, AL2, AL3 and AL4

LBA Alarm（Loop Break Alarm）

195	RLP	R／W	Select number of enabled alarms	
44	L8T	R／W	Delay time for LBA alarm activation	
119	L	R／W	Limit of supplied power in presence of LBA alarm	
$\begin{aligned} & 81 \\ & \text { bit } \end{aligned}$	Reset LBA alarm		R	OFF＝－ ON＝Reset alarm LBA
$\begin{gathered} 8 \\ \text { bit } \end{gathered}$	State of LBA alarm		R	OFF＝LBA off ON＝LBA alarm on

Heater Break Alarm

$\underset{\text { bit }}{112^{*}}$	Calibration HB alarm setpoint		R	$\begin{aligned} & \text { OFF = Calibration n } \\ & \text { ON = Calibration } \end{aligned}$	enabled nabled			
742＊	H87R	R／W	CT read in HB calibration			$\begin{gathered} 0.0 \\ \text { Zone } 1 \end{gathered}$	$\begin{gathered} 0.0 \\ \text { Zone } 2 \end{gathered}$	$\begin{gathered} 0.0 \\ \text { Zone } 3 \end{gathered}$
452＊	H8TV	R／W	TV read in HB calibration			$\begin{gathered} 0.0 \\ \text { Zone } 1 \end{gathered}$	$\begin{gathered} 0.0 \\ \text { Zone } 2 \end{gathered}$	$\begin{gathered} 0.0 \\ \text { Zone } 3 \end{gathered}$
743＊	HAP w	R／W	Ou．P power in calibration			$\begin{gathered} 0.0 \\ \text { Zone } 1 \end{gathered}$	$\begin{gathered} 0.0 \\ \text { Zone } 2 \end{gathered}$	$\begin{gathered} 0.0 \\ \text { Zone } 3 \end{gathered}$
758＊	RTR日	R／W	HB calibration with IR lamp current at 100\％conduction			$\begin{gathered} 0.0 \\ \text { Zone } 1 \end{gathered}$	$\begin{gathered} 0.0 \\ \text { Zone } 2 \end{gathered}$	$\begin{gathered} 0.0 \\ \text { Zone } 3 \end{gathered}$
759＊	IRTR	R／W	HB calibration with IR lamp current at 50% conduction			$\begin{gathered} 0.0 \\ \text { Zone } 1 \end{gathered}$	$\begin{gathered} 0.0 \\ \text { Zone } 2 \end{gathered}$	$\begin{gathered} 0.0 \\ \text { Zone } 3 \end{gathered}$
760＊	RTRE	R／W	HB calibration with IR lamp current at 30% conduction			$\begin{gathered} 0.0 \\ \text { Zone } 1 \end{gathered}$	$\begin{gathered} 0.0 \\ \text { Zone } 2 \end{gathered}$	$\begin{gathered} 0.0 \\ \text { Zone } 3 \end{gathered}$
761＊	促明	R／W	HB calibration with IR lamp current at 20% conduction			0.0 Zone 1	$\begin{gathered} 0.0 \\ \text { Zone } 2 \end{gathered}$	$\begin{gathered} 0.0 \\ \text { Zone } 3 \end{gathered}$
767＊	RTR4	R／W	HB calibration with IR lamp current at 15% conduction			$\begin{gathered} 0.0 \\ \text { Zone } 1 \end{gathered}$	$\begin{gathered} 0.0 \\ \text { Zone } 2 \end{gathered}$	$\begin{gathered} 0.0 \\ \text { Zone } 3 \end{gathered}$
768＊	RTR5	R／W	HB calibration with IR lamp current at 10% conduction			0.0 Zone 1	$\begin{gathered} 0.0 \\ \text { Zone } 2 \end{gathered}$	$\begin{gathered} 0.0 \\ \text { Zone } 3 \end{gathered}$

769＊	IRTH6	R／W	HB calibration with IR lamp （only in mode PA） current at 5\％conduction			$\begin{gathered} 0.0 \\ \text { Zone } 2 \end{gathered}$	0.0 Zone 3
382＊	快T月7	R／W	HB calibration with IR lamp （only in mode PA） current at 3\％conduction			$\begin{gathered} 0.0 \\ \text { Zone } 2 \end{gathered}$	0.0 Zone 3
383＊	IRT月8	R／W	HB calibration with IR lamp （only in mode PA） current at 2\％conduction			$\begin{gathered} 0.0 \\ \text { Zone } 2 \end{gathered}$	0.0 Zone 3
384＊	IRTR9	R／W	HB calibration with IR lamp （only in mode PA） current at 1\％conduction			$\begin{gathered} 0.0 \\ \text { Zone } 2 \end{gathered}$	0.0 Zone 3
445＊	RT VB	R／W	HB calibration with IR lamp Voltage at 100% conduction				
446＊	RT V	R／W	HB calibration with IR lamp Voltage at 50\％conduction				
447＊	RT VE	R／W	HB calibration with IR lamp Voltage at 30% conduction				
448＊	IRT V3	R／W	HB calibration with IR lamp Voltage at 20% conduction				
449＊	隹T V	R／W	HB calibration with IR lamp Voltage at 15\％conduction			$\begin{array}{\|c\|} \hline 0.0 \\ \text { Zone } 2 \end{array}$	0.0 Zone 3
450＊	敉TV5	R／W	HB calibration with IR lamp Voltage at 10% conduction				$\begin{gathered} 0.0 \\ \text { Zone } 3 \\ \hline \end{gathered}$
451＊	取T VE	R／W	HB calibration with IR lamp （only in mode PA） Voltage at 5\％conduction			$\begin{gathered} 0.0 \\ \text { Zone } 2 \end{gathered}$	0.0 Zone 3
390＊	IRTV1	R／W	HB calibration with IR Iamp （only in mode PA） Voltage at 100% conduction			$\begin{gathered} 0.0 \\ \text { Zone } 2 \end{gathered}$	0.0 Zone 3
391＊	敉T VB	R／W	HB calibration with IR lamp （only in mode PA） Voltage at 100% conduction			$\begin{gathered} 0.0 \\ \text { Zone } 2 \end{gathered}$	0.0 Zone 3
392＊	粚 V9	R／W	HB calibration with IR lamp （only in mode PA） Voltage at 1\％conduction			$\begin{gathered} 0.0 \\ \text { Zone } 2 \end{gathered}$	$\begin{gathered} 0.0 \\ \text { Zone } 3 \end{gathered}$
744	HRTR			HB alarm setp function of powe	t as load		
$\underset{\text { bit }}{26^{*}}$	Stare of HB alarm or POWER＿Fault		R／W	$\begin{aligned} & \mathrm{OFF}=\text { Alarm } \\ & \mathrm{ON}=\text { Alarm } \end{aligned}$			
$\begin{gathered} 76^{*} \\ \text { bit } \end{gathered}$	State of HB Alarm phase 1		R				
77	State of HB Alarm phase 2		R	with 3－phase load			
$\begin{aligned} & 78 \\ & \text { bit } \end{aligned}$	State of HB Alarm phase 3		R	with 3－phase load			
504		R S	States of alarm HB ALSTATE＿HB （for 3－phase loads）				
512＊		R	States of alarm ALSTATE （for single－phase loads）				
318		R	State of alarm ALSTATE IRQ		76		

Alarm SBR - ERR (Probe in short or connection error)

Power Fault ALARMS (SSR_SHORT, NO_VOLTAGE and NO_CURRENT)

Alarm due to overload

$\left.\begin{array}{|c|c|c|}\hline 655^{*} & & R\end{array}\right]$ INNTC_SSR

Fuse Open and Short Circuit Current Alarms

456	FR\%	R/W	Number of restarts in case of FUSE_OPEN / SHORT_CIRCUIT_CURRENT				0.0
$\begin{aligned} & 109 \\ & \text { bit } \end{aligned}$	RESET FUSE_OPEN /SHORT CIRCUIT_CURRENT ALARMS			R/W	$\begin{aligned} & \text { OFF =- } \\ & \text { ON = Reset FUSE_OPEN } \end{aligned}$	ORT_CIRCUIT_CURRENT alarms	
$\begin{aligned} & 116 \\ & \text { bit } \end{aligned}$	$\begin{aligned} & \text { RESETTING } \\ & \text { FOG } \end{aligned}$			R/W	```OFF = - ON = Reset count FO.c1```		
*Address 116 bit is 40-300A Only							
634*		R	State 4 (STATUS4)			Table of Instrument state 4	
434*	FOI	R	Counter 1: FUSE_OPEN events				
436*	FDEC	R	Counter 2: FUSE_OPEN events				

*Address 434 \& 436 bit are 40-300A Only

Outputs

$\begin{aligned} & 308 \\ & 319 \end{aligned}$	R	State rL.x MASKOUT	
$\frac{12^{*}}{\text { bit }}$	STATE rL. 1	R	OFF = Output off ON = Output on
${ }_{\text {bit }}{ }^{*}$	STATE rL. 2	R	OFF = Output off ON = Output on
${ }_{\text {bit }}^{14^{*}}$	STATE rL. 3	R	OFF = Output off ON = Output on
$15^{15^{*}}$	STATE rL. 4	R	$\begin{aligned} & \text { OFF = Output off } \\ & \text { ON = Output on } \end{aligned}$
${ }_{\text {bit }}^{16^{*}}$	STATE rL. 5	R	OFF = Output off ON = Output on
$\begin{gathered} 17^{*} \\ \text { bit } \end{gathered}$	STATE rL. 6	R	$\begin{aligned} & \text { OFF = Output off } \\ & \text { ON = Output on } \end{aligned}$

Allocation of Physical Outputs

85 bit	State of output OUT4	R	
86 bit	State of output OUT5	R	
87 bit	State of output OUT6	R	
88 bit	State of output OUT7	R	
89 bit	State of output OUT8	R	
90 bit	State of output OUT9	R	
91 bit	State of output OUT10	R	
664		R	State outputs (MASKOUT_OUT)

Automatic/Manual Control

Hold Funtion

140	DHE	R/W	Digital input function		
618	RHE	R/W	Digital input function 2		
64 bit	HOLD	R/W	OFF $=$ hold off ON $=$ hold on		

Manual Power Correction

505^{*}	RHF	R/W	Line voltage		
506^{*}	CRR	R/W	Manual power correction based on line voltage		
18 $136-249$	$5 P R$	R/W	Remote setpoint (SET Gradient for power correction		

Software Shutdown

Software Power On

Fault Action Power

Power Alarm

Operating Hour Meter

Trigger Modes

Soft Start

Delay Triggering

Feedback Modes

Heuristic Power Control

Heterogeneous Power Control

Virtual Instrument Control

191	HEH	R/W	Enable multiset instrument control via serial		
224^{*}	SHI	R/W	Control Inputs from Serial		
225	SGU	R/W	Control Outputs from Serial		
628	SLI	R/W	Control LEDs and digital inputs from serial		

305^{*}		R/W	State (STATUS_W)		
467^{*}		R	State (STATUS)		
469^{*}		R	State 1 (STATUS1)		
632^{*}		R	State 2 (STATUS2)		
633^{*}		R	State 3 (STATUS3)		
634^{*}		R	State 4 (STATUS4)		
702		R	Voltage Status		

Instrument Configuration Sheet (400 to 600A Models)

Definition of Parameter	Note	Assigned Value

Installation of Modbus Serial Network

Analog Input

573	TPR	R/W	Analog Input 1		
837	TPRE	R/W	Analog Input 2		
844	TPR3	R/W	Analog Input 3		
574	L5R	R/W	Minimum scale limit analog input		
838	L5RE	R/W	Minimum scale limit analog input 2		
845	LSR3	R/W	Minimum scale limit analog input 3		
575	H5RH	R/W	Maximum scale limit analog input 1		
839	HSRE	R/W	Maximum scale limit analog input 2		
846	H5R3	R/W	Maximum scale limit analog input 3		
577	OFSR	R/W	Offset correction for analog input 1		
841	OFSRE	R/W	Offset correction for analog input 2		
848	㫙5R3	R/W	Offset correction for analog input 3		

Main Input

Load Current Value

746^{*}	LTRH	R	Minimum limit of CT ammeter input scale (phase 1)
747	LTRE	R	Minimum limit of CT ammeter input scale (phase 2)
748	LTRE	R	Minimum limit of CT ammeter input scale (phase 3)
405^{*}	HTRt	R	Minimum limit of CT ammeter input scale (phase 1)
413	HTRE	R	Minimum limit of CT ammeter input scale (phase 2)
414	HTG3	R	Minimum limit of CT ammeter input scale (phase 3)
220^{*}	日TR	R/W	Offset correction CT input (phase 1)
415	日TRE	R/W	Offset correction CT input (phase 2)

| 416 | RTRコ | R/W | Offset correction CT input
 (phase 3) |
| :---: | :--- | :--- | :--- | :--- |
| 393 | RTR | R/W | Offset correction for
 external CT input |
| 227
 $485-139-755$ | ITR | R | Instantaneous CT input
 value (phase 1) |
| 490 | ITRE | R | Instantaneous CT input
 value (phase 2) |
| 494 | | | |

Value of Load Voltage

751*	LR. V	R	Voltage on load				
710*	1-L.V5	R	Load voltage instantaneous				
711*	LT. VIF	R	Load voltage with output activated				
752*	L-1	R	R Voltage on 3-phase load				
439*	LT. V!	R	Minimum limit of TV_LOAD voltmeter input scale				
443*	HT. VL	R	Maximum limit of TV_LOAD voltmeter input scale				
444	ПT. Vi	R/W	Offset correction voltmeter transformer input TV_LOAD				
442	FT.T VL	R/W	Digital filter voltmeter input TV_LOAD	0.0 ..20.0 sec	0.1 zone 1	0.1 zone 2	0.1 zone 3

Line Voltage Value

| 453^{*} | LTV | R | Minimum limit of TV voltmeter
 input scale (phase 1) |
| :---: | :---: | :---: | :---: | :---: |
| 454 | LTVE | R | Minimum limit of TV voltmeter
 input scale (3-phase, 2-leg) |
| 455 | LTVE | R | Minimum limit of TV voltmeter
 input scale (3-phase, 3-leg) |
| 410 | HTV | R | Maximum limit of TV voltmeter
 input scale (phase 1) |
| 417 | HTVE | R | Minimum limit of TV voltmeter
 input scale (3-phase, 2-leg) |
| 418 | HTVE | R | Minimum limit of TV voltmeter
 input scale (3-phase, 3-leg) |
| 412^{*} | FTTU | R/W | Digital filter TV auxiliary input
 (phase 1,2,3) |

Power on Load

$\begin{gathered} 880 \\ 719 \text { LSW } \end{gathered}$	LRP	R	Power on load
$\begin{gathered} 882 \\ 720 \mathrm{LSW} \end{gathered}$	LDPT	R	Power on Load 3-Phase
749*	-	R	Impedance on load
750	L	R	Impedance on load 3-phase
531*	L HE\|	R	Energy on load
541	1847	R	Energy on 3-phase load
510^{*}	LDEC	R	Energy on load
541	L 84	R	Energy on 3-phase load
114 bit	LDEt	R/W	$\begin{aligned} & \text { OFF = - } \\ & \text { ON = Reset Ld.E1 } \end{aligned}$
115 bit	LDEC	R/W	$\begin{aligned} & \text { OFF = - } \\ & \text { ON = Reset Ld.E1 } \end{aligned}$

Digital Inputs

356	PumT1	R/W	Timeout for input PWM 1
357	PUPTE	R/W	Timeout for input PWM 2
362	Pumpe	R/W	Timeout for input PWM 3
438	FTPLM	R/W	Digital low pass filter input PWM 1
372	FTPLITP	R/W	Digital low pass filter input PWM 2
373	FTPLTE	R/W	Digital low pass filter input PWM 3
68	State of Digital Input 1		R OFF = Digital input 1 off ON $=$ Digital input 1 on
$\begin{aligned} & 92 \\ & \text { hit } \end{aligned}$	State of Digital Input 2		R OFF $=$ Digital input 2 off ON $=$ Digital input 2 on
$\begin{aligned} & 67 \\ & \text { bit } \end{aligned}$	State of Digital Input 3		R OFF = Digital input 3 off ON = Digital input 3 on
$\begin{aligned} & 66 \\ & \text { bit } \end{aligned}$	State of Digital Input 4		$\begin{array}{l\|l} \hline \text { R } & \text { OFF = Digital input } 4 \text { off } \\ \text { ON }=\text { Digital input } 4 \text { on } \end{array}$
317		R S	State of digital inputs INPUT DIG
518	In.PWM 1	R	PWM 1 input value
435	In.PWM 2	R	PWM 2 input value
457	In.PWM 3	R	PWM 3 input value

Alarms

Heater Break Alarm

195^{*}	RLR	R/W	Select number of enabled alarms		
57^{*}	HBF	R/W	HB alarm function		
56^{*}	HBT	R/W	Delay time for HB alarm activation		

| 112^{*} |
| :---: | :---: | :---: | :---: |
| bit | | Calibration HB |
| :---: |
| alarm setpoint |$\quad \mathrm{R} \quad$| OFF = Calibration not enabled |
| :---: |
| ON = Calibration enabled |

743＊	HEP w	R／W	Ou．P power in calibration				
758＊	RTRE	R／W	HB calibration with IR lamp current at 100\％conduction				
759＊	IRTR	R／W	HB calibration with IR lamp current at 50% conduction				
760＊	RTRE	R／W	HB calibration with IR lamp current at 30% conduction				
761＊	怾阴	R／W	HB calibration with IR lamp current at 20% conduction				
767＊	RTR4	R／W	HB calibration with IR lamp current at 15% conduction				
768＊	RTR5	R／W	HB calibration with IR lamp current at 10\％conduction				
769＊	RTRE	R／W	HB calibration with IR lamp current at 5\％conduction				
382＊	RTR7	R／W	HB calibration with IR lamp current at 3\％conduction				
383＊	RTR日	R／W	HB calibration with IR lamp current at 2\％conduction				
384＊	RTRS	R／W	HB calibration with IR lamp current at 1\％conduction				
445＊	隹 V V	R／W	HB calibration with IR lamp Voltage at 100\％conduction				
446＊	IRT V	R／W	HB calibration with IR lamp Voltage at 50% conduction				
447＊	RT Ve	R／W	HB calibration with IR lamp Voltage at 30% conduction				
448＊	隹 V3	R／W	HB calibration with IR lamp Voltage at 20% conduction				
449＊	隹 V－1	R／W	HB calibration with IR lamp Voltage at 15% conduction				
450＊	RTV5	R／W	HB calibration with IR lamp Voltage at 10% conduction				
451＊	隹 V 6	R／W	HB calibration with IR lamp （only in mode PA） Voltage at 5\％conduction				
390＊	$\operatorname{RTT}^{7} \mathrm{~V}$	R／W	HB calibration with IR lamp （only in mode PA） Voltage at 100\％conduction				
391＊	RT VB	R／W	HB calibration with IR lamp （only in mode PA） Voltage at 100% conduction				
392＊	㰨 Vg	R／W	HB calibration with IR lamp （only in mode PA） Voltage at 1\％conduction				

744^{*}	HRTR	R	HB alarm setpoint as function of power on load		
26^{*} bit	Stare of HB alarm or POWER_Fault	R/W			
76* bit	State of HB Alarm phase 1 TA	R			
77	State of HB Alarm phase 2 TA	R			
bit					phe
:---:					

Power Fault ALARMS (SSR_SHORT, NO_VOLTAGE and NO_CURRENT)

${ }_{9}^{96^{*}}$	State of alarm SSR_SHORT phase 1	R	
97	State of alarm SSR_SHORT phase 2	R	
$\underset{\text { bit }}{98}$	State of alarm SSR_SHORT phase 3	R	
$\underset{\text { bit }}{99^{*}}$	State of alarm NO_VOLTAGE phase 1	R	
$\begin{gathered} 100 \\ \text { bit } \end{gathered}$	State of alarm NO_VOLTAGE phase 2	R	
$\begin{aligned} & 101 \\ & \text { bit } \end{aligned}$	State of alarm NO_VOLTAGE phase 3	R	
$\begin{gathered} 102 \\ \mathrm{bit} \end{gathered}$	State of alarm NO_CURRENT phase 1	R	
$\begin{gathered} 103 \\ \text { bit } \end{gathered}$	State of alarm NO_CURRENT phase 2	R	
$\begin{gathered} 104 \\ \text { bit } \end{gathered}$	State of alarm NO_CURRENT phase 3	R	

Alarm due to overload

Fuse Open and Short Circuit Current Alarms

Allocation of Reference Signal

Allocation of Physical Outputs

$\begin{aligned} & 82 \\ & \text { bit } \end{aligned}$	State of output OUT1	R	OFF = Output off ON = Output on
$\begin{aligned} & 83 \\ & \text { bit } \end{aligned}$	State of output OUT2	R	$\begin{aligned} & \text { OFF = Output off } \\ & \text { ON = Output on } \end{aligned}$
$\begin{aligned} & 84 \\ & \text { bit } \end{aligned}$	State of output OUT3	R	OFF = Output off ON = Output on
$\begin{aligned} & 85 \\ & \text { bit } \end{aligned}$	State of output OUT4	R	OFF = Output off ON = Output on
$\begin{aligned} & 86 \\ & \text { bit } \end{aligned}$	State of output OUT5	R	OFF = Output off ON = Output on
87	State of output OUT6	R	OFF = Output off ON = Output on
$\begin{aligned} & 88 \\ & \text { bit } \end{aligned}$	State of output OUT7	R	$\begin{aligned} & \text { OFF = Output off } \\ & \text { ON = Output on } \end{aligned}$
$\begin{aligned} & 89 \\ & \text { bit } \end{aligned}$	State of output OUT8	R	OFF = Output off ON = Output on
$\begin{aligned} & 90 \\ & \text { bit } \end{aligned}$	State of output OUT9	R	OFF = Output off ON = Output on
$\begin{aligned} & 91 \\ & \text { bit } \end{aligned}$	State of output OUT10	R	$\begin{aligned} & \text { OFF = Output off } \\ & \text { ON = Output on } \end{aligned}$
664	R Sta	ou	(MASKOUT_OUT)

Analog Output

727	SERIAL_OUTA1	R/W	Serial line value for analog output 1

728	SERIAL_OUTA2	R/W	Serial line value for analog output 2		
729	SERIAL_OUTA3	R/W	Serial line value for analog output 3		

Control

617	GPU	R/W	Power reference	
2^{*} $132-471$	日UP	R	Value control outputs	
765^{*}	PPER	R/W	Percentage of output power	
766^{*}	PGF5	R/W	Offset of output power	

763^{*}	GOUT	R/W	Gradient for output control		
764^{*}	LGP	R/W	Minimum ignition output		

Automatic/Manual Control

Manual Power Correction

505	RIF	R/W	Line Voltage		
506	ᄃRR	R/W	Correction of manual power based on line voltage		
18 $136-249$	gPR	R/W	Remote setpoint (SET gradient for manual power correction)		

Start Mode

Software Shutdown

140	R/G	R/W	Digital Input Function 1		
618	RGE	R/W	Digital Input Function 2		
694	RGE	R/W	Digital Input Function 3		

Heating Output (Fast Cycle)

Operating Hour Meter

\square

SSR Trigger Mode

| 703^{*} | HB5 | R/W | Enable Trigger Modes | | | |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| 707^{*} | FUTR | R/W | Max. limit of RMS
 current in normal operation | | | |
| 704^{*} | RFFU | R/W | Minimum number of cycles of BF
 modes | | | |

Soft Start Trigger Mode

| 107* |
| :---: | :---: | :---: | :---: |
| bit | | State of phase |
| :---: |
| softstart ramp |$\quad \mathrm{R} \quad$| OFF $=$ Ramp not ended |
| :---: |
| ON $=$ Ramp ended |

Delay Triggering

Feedback Modes

| 113^{*} |
| :---: | :---: | :---: | :---: |
| bit | | Calibration of voltage |
| :---: |
| feedback reference |\quad R/W | OFF = Calibration not enabled |
| :---: |
| ON = Calibration enabled |

886^{*}					
757^{*}	RRF	R	Feedback		
LSW only					

Heuristic Power Control

Heterogeneous Power Control

682	H54	R/W	Enable heterogeneous power control	
683	HET	R/W	Maximum current for heterogeneous power control	

Virtual Instrument Control

191	HRH	R/W	Enable multiset instrument control via serial		
224^{*}	SHf	R/W	Control Inputs from Serial		
225	SAL	R/W	Control Outputs from Serial		
628	SLI	R/W	Control LEDs and digital inputs from serial		

HW/SW Data

Limited Warranty:
Please refer to the Chromalox limited warranty applicable to this product at http://www.chromalox.com/customer-service/policies/termsofsale.aspx.

Chromalox, Inc.
1347 Heil Quaker Boulevard Lavergne, TN 37086
(615) 793-3900
www.chromalox.com

[^0]: *Address 434 \& 436 bit are 40-300A Only

