Programming Manual

C4, C4X 4-Channel SCR Power Controller with Independent PID Control
 Software Version 1.01

CHROMALOX
 Advanced Thermal Technologies

Table of Contents

Introduction 2
FIELD OF USE 2
Prohibited use 2
CHARACTERISTICS OF PERSONNEL 2
STRUCTURE OF THIS MANUAL 3
Communications 4
SERIAL COMMUNICATION (MODBUS) 5
C4-compatible mode (dip-switch-7 =ON) 5
C4 mode (dip-switch-7=OFF) 5
CONNECTION. 5
Installation of the "MODBUS" serial network 5
Inputs 6
MAIN INPUT 6
Probes and sensors 6
Scale limits 7
Setting the offset 7
Read state 7
Input filters 8
Linearization of input signal 8

- Signals from sensors 10
- Signals coming from custom thermocouples 11
CT AUXILIARY INPUT (Ammeter) 12
Scale limits 13
Setting the offset 13
Read state 13
Input filter 13
Input sampling interval 13
VOLTAGE VALUE ON THE LOAD (Voltmeter) 14
Scale limits 15
Setting the offset 15
Read state 15
Input filter. 15
AUXILIARY ANALOG INPUT (LIN/TC) 16
Scale limits 17
Setting the offset 17
Read state 17
Input filter. 17
DIGITAL INPUTS 18
Read state 18
Functions related to digital inputs 18
USING A FUNCTION ASSOCIATED WITH DIGITAL INPUT AND VIA SERIAL 19
USING A FUNCTION OF DIGITAL INPUT 1 TO ENABLE AT SOFTWARE ON 20
Alarms 21
GENERIC ALARMS AL1, AL2, AL3 and AL4 21
Reference variables 22
Alarm setpoints 22
Alarms hysteresis 22
Alarm type 23
Limits of absolute alarm settings 23
Enable alarms. 24
Reset memory latch 24
Read state 24
LBA ALARM (Loop Break Alarm) 26
Enable alarm 26
Read state 26
HB ALARM (Heater Break Alarm) 26
Enable alarm 27
Alarm setpoints 28
Read state 28
ALARM SBR - ERR (probe in short or connection error) 29
Enable alarm 29
Read state 29
C4 with 4 TA 30
C4 with 1 TA 30
POWER FAULT ALARMS (SSR SHORT, NO_VOLTAGE, SSR_OPEN and NO_CURRENT) C4TERMO4 with 4 TA 30
Read state 31
OVERHEAT ALARM 31
OUTPUTS 32
Allocation of reference signals 32
Read state 34
Allocation of physical outputs 35
Read state 35
SETTINGS 37
SETTING THE SETPOINT 37
Local setpoint 37
Remote setpoint 37
Shared settings 37
Read active setpoint. 37
SETPOINT CONTROL 38
Set gradient 38
Multiset 38
CONTROLS 40
PID HEAT/COOL CONTROL 40
Control actions 40
Proportional, derivative, and integral action 40
Heat/cool control with separate or superimposed band. 40
Heat/cool control with relative gain 41
PID Parameters 41
Read state 42
AUTOMATIC / MANUAL CONTROL 44
HOLD FUNCTION 44
MANUAL POWER CORRECTION 44
MANUAL TUNING 45
AUTOTUNING 46
Read state 47
SELFTUNING 48
Read state 49
SOFTSTART 49
Read state 50
START MODE 50
SOFTWARE SHUTDOWN 50
Read state 50
Specialized Control Functions 51
FAULT ACTION POWER 51
Read state 51
POWER ALARM 51
SOFTSTART FOR PREHEATING 53
Read state 53
HEATING OUTPUT (Fast cycle) 53
POWER CONTROL 54
SSR CONTROL MODES 54
HEURISTIC Control power 54
HETEROGENEOUS power control 55
VIRTUAL INSTRUMENT CONTROL 56
HW/SW INFORMATION 58
INSTRUMENT CONFIGURATION SHEET. 64
PROGRAMMABLE PARAMETERS 64

ATTENTION!

This manual is an integral part of the product, and must always be available to operators.

This manual must always accompany the product, including if it is transferred to another user.
Installation and/or maintenance workers MUST read this manual and precisely follow all of the instructions in it and in its attachments. Chromalox will not be liable for damage to persons and/or property, or to the product itself, if the following terms and conditions are disregarded.

Important Safeguards

AWARNING

HIGH VOLTAGE (up to 480 VAC) is used in the operation of this equipment; DEATH ON CONTACT may result if personnel fail to observe safety precautions.
Learn the areas containing high-voltage connections when installing or operating this equipment.

AWARNING

Be careful not to contact high-voltage connections when installing or operating this equipment.
Before working inside the equipment, turn power off and ground all points of high potential before touching them.

ACAUTION

The owner/installer must provide all necessary safety and protection devices and follow all current electrical wiring standards and regulations. Failure to do so may compromise the integrity of the controller and/or cause product failure resulting in a safety risk to operational and service personnel.

The Customer is obligated to respect trade secrets. Therefore, this manual and its attachments may not be tampered with, changed, reproduced, or transferred to third parties without Chromalox's authorization.

ACAUTION

This controller utilizes a heat sink which is designed to cool the unit during operation. Under no circumstance should air flow around the controller be compromised in any way. Failure to do so may result in the overheating of the controller, product failure, product temperatures and even fire.

AWARNING

During continuous operation, the heat sink can reach very high temperatures, and keeps a high temperature even after the unit is turned off due to its high thermal inertia.
Higher voltages may be present. DO NOT work on the power section without first cutting out electrical power to the panel. Failure to do so may cause serious injury or death.

AWARNING

ELECTRIC SHOCK HAZARD: Any installation involving control equipment must be performed by a qualified person and must be effectiveIy grounded in accordance with the National Electrical Code to eliminate shock hazard.

Introduction

The C4 Family of PID \& power controllers are the C4, C4-IR, and C4X. This Programming Manual offers great application flexibility thanks to the extended configurability and programmability of its parameters.

(i)
This manual covers the C4 and C4X products. For the C4-IR please consult that Programming Manual.

Configuration and programming is accomplished by connecting the C4 or C4X to a PC which is equipped with the Chromalox C-PWR configuration software program. Connection between the PC and the controller MUST be done with a specific USB to TTL (or USB to RS485 adaptor cable supplied by Chromalox). Since it is impossible to foresee all of the installations and environments with which the instrument may be applied, adequate technical preparation and complete knowledge of the instrument's potentials are necessary.

(1)
Chromalox declines all liability if instructions for proper installation, configuration, and/or programming are disregarded, as well as all liability for systems upstream and/or downstream of the instrument.

Field of Use

The C4 Family is an ideal solution for many applications including multizone Ovens, Heat Treatment Furnaces, Thermoformers, Packaging Machinery, Food Processing Equipment, Semiconductor Equipment, Plastics Processing Equipmentt, and specialty loads such as IR Emitters, Silicon Carbide elements or transformers.

\triangle
Chromalox declines all liability for damage of any type deriving from installations, configurations, or programmings that are inappropriate, imprudent, or not conforming to the technical data supplied.

The C4 Family is highly programmable and flexible. The C4 Family can also be used for other applications provided they are compatible with the instrument's technical data. Application and use of the C4 Family of products must always conform to the limits specified in the technical data supplied.

Prohibited Use

It is absolutely prohibited:

- to utilize the instrument or parts of it (including software) for any use not conforming to that specified in the technical documentation supplied;
- to modify working parameters inaccessible to the operator, decrypt or transfer all or part of the software;
- to utilize the instrument in explosive atmospheres;
- to repair or convert the instrument using non-original replacement parts;
- to utilize the instrument or parts of it without having read and correctly understood the technical documentation supplied;
- to scrap or dispose of the instrument in normal dumps; components that are potentially harmful to the environment must be disposed of in conformity to the regulations of the country of installation.

Characteristics of Personnel

This manual is intended for technical personnel, who commission the instrument by connecting it to other units, and for service and maintenance personnel. It is assumed that such persons have adequate technical knowledge, especially in the fields of electronics and automation.
The instrument described in this manual may be operated only by personnel who are trained for their assigned task, in conformity to the instructions for such task and, specifically, to the safety warnings and precautions contained in such instructions.
Thanks to their training and experience, qualified personnel can recognize the risks inherent to the use of these products/systems and are able to avoid possible dangers.

Structure of this Manual

This manual was originally written in ITALIAN. Therefore, in case of inconsistencies or doubts, request the original manual or explanations from Chromalox.
The instructions in this manual do not replace the safety instructions and the technical data for installation, configuration and programming applied directly to the product or the rules of common sense and safety regulations in effect in the country of installation.
For easier understanding of the controller's basic functions and its full potentials, the configuration and programming parameters are grouped according to function and are described in separate chapters.
Each chapter has from 1 to 3 sections:

- the first section presents a general description of the parameters described in detail in the following zones;
- the second section presents the parameters needed for the controller's basic applications, which users and/or installers can access clearly and easily, immediately finding the parameters necessary for quick use of the controller;
- the third section (ADVANCED SETTINGS) presents parameters for advanced use of the controller: this section is addressed to users and/or installers who want to use the controller in special applications or in applications requiring the high performance offered by the instrument.
Some sections may contain a functional diagram showing interaction among the parameters described;
- terms used on other pages of the manual (related or supplemental topics) are shown in underlined italics and listed in the index (linked to IT support).
In each section, the programming parameters are shown as follows:

Main Modbus address and additional addresses (if any).
Any second / third Modbus addresses are alternatives to the main address.

Communications

The modular power controller's flexibility permits replacement of previous-version instruments without changing the control software in use.

Based on the chosen work mode (see MODBUS SERIAL COMMUNICATION), you can use the instrument in 2 different modes:

- C4 Compatible mode
- C4 mode

New shared parameters, identified with Modbus addresses higher than 600, are accessible for both modes and permit more advanced functions such as:

In addition to having a CUSTOM group of parameters for dynamic addressing, C4 mode lets you use a single communication network node in-stead of 4 nodes as in Compatible mode.
NOTE! When programming, keep in mind that the addresses (parameters) described in this manual exist 4 times, specified by address node (ID).

C4 Compatible Mode Diagram

Serial Communication (Modbus)

There are two Modbus addressing modes for variables and configuration parameters:

- C4 compatible mode
- C4

The modes are selected with dip-switch-7.

C4 Compatible Mode (Dip-Switch—ON)

This lets you use supervision programs created for C4 modules.
Memory is organized into 4 groups:

- Zone 1
- Zone 2
- Zone 3
- Zone 4

In each zone, the variables and parameters have the same address as a C 4 instrument; the value (Cod) set on the rotary switches corre-sponds to that of Zone 1; the values in the other zones are sequential. Shared word parameters for the C4 instrument have addresses starting at 600 . Shared bit parameters have addresses high than 80.

Examples:

If the rotary switches have value 14 , node 14 addresses Zone 1, node 15 Zone 2, node 16 Zone 3, node 17 Zone 4. The process variable (PV) for Zone 1 has address Cod 0 . The PV for Zone 2 has address Cod+1, 0 , etc... Parameter out.5, which defines the function of output OUT 5 on the C 4 , has address Cod 611 .

C4 Mode (Dip-Switch—OFF)

This lets you optimize the efficiency of serial communication by integrating 4 zones in the C4. Memory is organized into 5 groups: 4 al-ready in C4-compatible mode, plus one group defined as custom:

- Custom (additional memory map for dynamic addresses)
- Zone 1
- Zone 2
- Zone 3
- Zone 4

The custom group contains variables and parameters for a maximum of 120 words. The meaning of these words can be changed.
There is a single value (Cod) set on the rotary switches; i.e., one for each C 4 instrument. To access the data in each zone, simply add an offset to the address (+1024 for Zone 1, +2048 for Zone 2, +4096 for Zone 3, +8192 for Zone 4). Words in the custom group have addresses $0, \ldots, 119$. The variables and parameters are defined by default. At addresses 200,...,319 we have words containing the value of the ad-dress of the corresponding variables or parameters. These addresses can be changed by the user, offering the ability to read/write data with multi-word messages structured according to various supervision requirements.

NOTE: Protection of Maps 1-2.
You have to write the value 99 on addresses 600 and 601 to enable change of the custom group (addresses 200... 319). This value is reset at each switch-on.

Examples:
You can access the PV variable in Zone 1 with address Cod, $0+1024$ or address Cod, 0 custom variable 1 (address Cod, 200 has value 1024); you can access the PV variable in Zone 2 with address Cod, 0+2048 or address Cod, 29 custom variable 30 (address Cod, 229 has value 2048); if you want to read the 4 process variables in sequence at the first 4 addresses, set Cod, 200 $=1024$, Cod. $201=2048$, Cod,202 $=4096$, Cod, $203=$ 8192.

Connection

Each C4 has an optically isolated serial port RS485 (PORT 1) with standard Modbus protocol via connectors S1 and S2 (type RJ10). Connector S3 is suitable for direct connection to a slave module or to a C4-OP operator terminal. Remember that the maximum communication speed of these devices is 19200 baud. You can insert a serial interface (PORT 2). There are various models based on the field bus required: Modbus, Profibus DP, CANopen, DeviceNet and Ethernet.
This communication port (PORT 2) has the same Cod address as PORT 1. The parameters for PORT 2 are bAu. 2 (select baud-rate) and Par. 2 (select parity).
The Cod parameter (read only) shows the value of the node address, settable from 00 to 99 with the 2 rotary switches; the hexadecimal settings are reserved. A parameter can be read or written from both communication ports (PORT 1 and PORT 2).

AWARNING

Changing the bAu (select baud-rate) and/or PAr (select parity) parameters may cause communication failure.
To set the bAu and PAr parameters, you have to run the Autobaud procedure described in the "Instruction and warnings" manual.
Run the Autonode procedure for the Slave node parameter. For the Master, simply switch off and then back on.

Installation of the "MODBUS" Serial Network

A network typically has a Master that "manages" communication by means of "commands" and Slaves that interpret these commands. C4's are considered Slaves to the network master, which is usually a supervision terminal or a PLC. They are positively identified by means of a node ad-dress (ID) set on the rotary switches (tens + ones). C4's have a ModBus serial (Serial 1) and optional Fieldbus (Serial 2) serial (see order code) with one of the following protocols: ModBus, Profibus, CANopen, DeviceNet, Ethernet.

The following procedures are required for the Modbus protocol.
For the remaining protocols, see the specific Profibus, CANopen, DeviceNet and Ethernet manuals.
C4 modules have the following default settings:

- node address $=0(0+0)$
- speed Serial $1=19,200$ bit/s
- parity Serial 1 = none
- speed Serial 2 = 19,200 bit/s
- parity Serial 2 = none

You can install a maximum of 99 C 4 modules in a serial network, with node address selectable from "01" to " 99 " in standard mode, or create a mixed C4 network in C4 compatible mode in which each C4 identifies 4 zones with sequential node address starting from the code set on the rota-ry switches.
In short, the valid rotary switch settings (tens + ones) are:

- $(0+0)=$ Autobaud Serial 1
- $(B+0)=$ Autobaud Serial 2
- $(A+0)=$ Autonode Serial 1 for slave modules connected to C4.

Inputs

Main Inputs

The modular power controller has 4 main inputs to control 4 temperature zones, to which you can connect temperature sensors (thermocouples and RTD), linear sensors or custom sensors to acquire process variable (PV) values. To configure, you always have to define the type of probe or sensor (tYP), the maximum and minimum scale limit (Hi.S - Lo.S) for the process variable value, and the position of the decimal point (dP.S).
If the sensor is a thermocouple or resistance thermometer, the minimum and maximum limits can be defined on the specific scale of the sensor. These limits define the width of the proportional control band and the range of values settable for the setpoint and alarm setpoints.

There is a parameter to correct the offset of the input signal (oF.S): the set value is algebraically added to the read of the process variable.
You can read the state of the main input (Err) in which an input error is reported: when the process variable goes beyond the upper or lower scale limit, it assumes the value of the limit and the corresponding state reports the error condition:
Lo $=$ process variable $<$ minimum scale limit
$\mathrm{Hi}=$ process variable $>$ maximum scale limit
Err $=$ Pt100 in short circuit and input value below minimum limit,

4...20mA transmitter interrupted or not powered

Sbr = Tc probe interrupted or input value above maximum limit
If noise on the main input causes instability of the acquired value, you can reduce its effect by setting a low pass digital filter (FIt). The default setting of 0.1 sec is usually sufficient. You can also use a digital filter (Fld) to increase the apparent stability of the process variable PV; the filter introduces a hysteresis on its value: if the input variation remains within the set value, the PV value is considered unchanged.

Maximum error of non linearity for thermocouples (Tc), resistance thermometer (PT100)

Tc Type:		
J, K		error < 0.2\% f.s.
S, R	range $0 . . .1750^{\circ} \mathrm{C}$:	error $<0.2 \%$ f.s. ($\mathrm{t}>300^{\circ} \mathrm{C}$)
	For other ranges:	error < 0.5\% f.s.
T	error < 0.2% f.s. ($\mathrm{t}>-150^{\circ} \mathrm{C}$)	
And inserting a custom linearization		
E,N,L		error $<0.2 \%$ f.s.
B	range $44 . . .1800^{\circ} \mathrm{C}$;	error < 0.5% f.s. ($\mathrm{t}>300^{\circ} \mathrm{C}$)
	range 44.0...999.9;	error f.s. ($\mathrm{t} 3300^{\circ} \mathrm{C}$)
U	range -200...400;	error $<0.2 \%$ f.s. (for $\mathrm{t}>-100^{\circ} \mathrm{C}$)
	For other ranges;	error $<0.5 \%$ f.s.
G	error < 0.2% f.s. ($\mathrm{l}>300^{\circ} \mathrm{C}$)	
D	error < 0.2\% f.s. (t > $200^{\circ} \mathrm{C}$)	
C	range 0...2300;	error $<0.2 \%$ f.s.
	For other ranges;	error $<0.5 \%$ f.s.
JPT100 and PT100		error < 0.2\% f.s.

The error is calculated as deviation from theoretical value with \% reference to the full-scale value expressed in degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$.

Table of probes and sensors

TC SENSOR				
Type	Type of probe	Scale	Without Decimal Point	With Decimal Point
0	TC J	${ }^{\circ} \mathrm{C}$	0/1000	0.0/999.9
1	TC J	${ }^{\circ} \mathrm{F}$	32/1832	32.0/999.9
2	TC K	${ }^{\circ} \mathrm{C}$	0/1300	0.0/999.9
3	TC K	${ }^{\circ} \mathrm{F}$	32/2372	32.0/999.9
4	TC R	${ }^{\circ} \mathrm{C}$	0/1750	0.0/999.9
5	TC R	${ }^{\circ} \mathrm{F}$	32/3182	32.0/999.9
6	TC S	${ }^{\circ} \mathrm{C}$	0/1750	0.0/999.9
7	TC S	${ }^{\circ} \mathrm{F}$	32/3182	32.0/999.9
8	TC T	${ }^{\circ} \mathrm{C}$	-200/400	-199.9/400.0
9	TC T	${ }^{\circ} \mathrm{F}$	-328/752	-199.9/752.0
28	TC	custom	custom	custom
29	TC	custom	custom	custom
SENSOR: RTD 3-wires				
Type	Type of probe	Scale	Without Decimal Point	With Decimal Point
30	PT100	${ }^{\circ} \mathrm{C}$	-200/850	-199.9/850.0
31	PT100	${ }^{\circ} \mathrm{F}$	-328/1562	-199.9/999.9
32	JPT100	${ }^{\circ} \mathrm{C}$	-200/600	-199.9/600.0
33	JPT100	${ }^{\circ} \mathrm{F}$	-328/1112	-199.9/999.9
SENSOR: RTD 3-wires				
Type	Type of probe	Scale	Without Decimal Point	With Decimal Point
34	$0 . . .60 \mathrm{mV}$	Linear	-1999/9999	-199.9/999.9
35	0... 60 mV	Linear	Custom linearization	Custom linearization
36	$12 . .60 \mathrm{mV}$	Linear	-1999/9999	-199.9/999.9
37	$12 . .60 \mathrm{mV}$	Linear	Custom linearization	Custom linearization
SENSOR: 60 mV voltage				
Type	Type of probe	Scale	Without Decimal Point	With Decimal Point
38	0... 20 mA	Linear	-1999/9999	-199.9/999.9
39	$0 . . .20 \mathrm{~mA}$	Linear	Custom linearization	Custom linearization
40	4... 20 mA	Linear	-1999/9999	-199.9/999.9
41	4... 20 mA	Linear	Custom linearization	Custom linearization
SENSOR: 20mA current				
Type	Type of probe	Scale	Without Decimal Point	With Decimal Point
42	$0 . . .1 \mathrm{~V}$	Linear	-1999/9999	-199.9/999.9
43	$0 . . .1 \mathrm{~V}$	Linear	Linear Custom	Linear Custom
44	$200 \mathrm{mv} . .1 \mathrm{~V}$	Linear	-1999/9999	-199.9/999.9
45	$200 \mathrm{mv} . .1 \mathrm{~V}$	Linear	Custom linearization	Custom linearization
SENSOR: 1V voltage				
Type	Type of probe	Scale	Without Decimal Point	With Decimal Point
46	Cust. 20mA	-	-1999/9999	-199.9/999.9
47	Cust. 20 mA	-	Custom linearization	Custom linearization
48	Cust. 60mV	-	-1999/9999	-199.9/999.9
49	Cust. 60mV	-	Custom linearization	Custom linearization
50	PT100-JPT	-	custom	custom
99	Input off			

403	dP.	R/W	Decimal Point for Input Scale	Decimal Point Table		0
Specifies the number of decimal figures used to represent the input signal value: for example, $875.4\left({ }^{\circ} \mathrm{C}\right)$ with dP.S $=1$				dP_S	Format	
				0	XXXX	
				1	XXX.X	
				2	XX. XX (*)	
				3	X. XXX (*)	
				(*) Not available for TC, RTD Probes		

Scale Limits

Engineering value associated to maximum level of the signal generated by the sensor connected to the input: for example $1300\left({ }^{\circ} \mathrm{C}\right)$ with type K thermocouple

Engineering value associated to minimum level of the signal generated by the sensor connected to the input: for example $0\left({ }^{\circ} \mathrm{C}\right)$ with type K thermocouple

402	R,. .5	R/W	Maximum scale limit of main input
Engineering value associated to maximum level of the signal gener- ated by the sensor connected to the input: for example $1300\left({ }^{\circ} \mathrm{C}\right)$ with type K thermocouple			

Setting the Offset

519 23	$\boxed{\square F}$	R/W	Offset Correction for Main Input	$-999 \ldots 99$ scale points	0

Lets you set a value in scale points that is algebraically added to
the value measured by the input sensor.

Advanced Settings

Input Filters

| 24 | FLL | R/W | Low pass Digital Filter
 on Input Signal |
| :---: | :---: | :---: | :---: | 0.0...20.0 sec

Sets a low pass digital filter on the main input, running the average value read in the specified time interval. If $=0$ exclude the average filter on the sampled values.

179	FLd	R/W	Digital filter on oscillations of input signal	$0 \ldots 9.9$ scale points	0.5

Introduces a hysteresis zone on the input signal value within which the signal is considered unchanged, thereby increasing its apparent stability.

Linearization of Input Signal

The modular power controller lets you set a custom linearization of the signal acquired by the main input for signals coming from sensors and for signals coming from customer thermocouples.
Linearization is performed with 33 values (S00...S32: 32 segments).
S33, S34, S35 are an additional 3 values to be inserted in case of linearization with custom CT.

Signals from Sensors

For signals coming from sensors, linearization is done by dibiding the input scale into 32 zones of equal dV amplitude, where:

$$
\mathrm{dV}=(\text { full-scale value-start of scale value)/32 }
$$

Point 0 (origin) corresponds to the engineering value attributed to the minimum value of the input signal. Subsequent points cor-respond to the engineering values attributed to input values equal to:

Input value (k) = Minimum input value $+\mathrm{k}^{*} \mathrm{dV}$
Where k is the order number of the linearization point.

Signals Coming from Custom Thermocouples

An alternate linearization is available only for sensors consisting of custom thermocouples，created by defining engineering values at three measurement scale points settable with the following parameters：

293	ら．ココ	R／W	Engineering value attributed to mini－mum value of the input scale	mV start of scale $(-19.99 . . .99 .99)$
294	5.34	R／W	Engineering value attributed to maxi－mum value of the input scale．	$\begin{gathered} \text { mV full scale } \\ (-19.99 \ldots . .99 .99) \end{gathered}$
295	5.35	R／W	Engineering value attributed to in－ put signal corresponding to $50^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{mV} \text { at } 50^{\circ} \mathrm{C} \\ (-1.999 \ldots . .9 .999) \end{gathered}$

Functional Diagram

NOTE：The decimal point does not change the contents of the PV，but only permits its correct interpretation． Ex．if dP．S＝ 1 and $\mathrm{PV}=3$－，the engineering val－ue in C is 30．0．

CT Auxiliary Input (Ammeter)

Optional input used to monitor current delivered to the load, both single phase and 3-phase, with automatic recognition of the internal ammeter transformer.

Models with 4 CT's (C4-x-x-2-x-x and C4-x-x-4-x-x) let you continuously acquire the current values circulating in the load with sampling interval of 60ms. The current value can be read in variable I.tA1 of each zone. If zone 1 has a 3 -phase load, variables I.tA1, I.tA2 and I.tA3 in the first zone have the current value in line 1, line 2 and line 3 , respectively.

You can also read the maximum current value corresponding to running state (ON) in variable I1on. This value is reset when no power is request-ed. In 3-phase load configuration, variables I1on, I2on and I3on in the first zone contain the current value in line 1, line 2 and line 3 , respectively.

Models with 1 CT (C4-x-x-1-x-x and CX4-x-x-3-x-x) sample the load current value at a programmable time interval (parameter dG.t). Therefore, you can use the best sampling time for the application being run and, especially, for load type, since activation of the scan to identify faults on the load with fast systems and short cycle times may be critical for stable temperature control.

This works by having power to all 4 zones interrupted (control outputs = OFF), then, in succession, if the power requested exceeds a minimum settable value (dG.P), the individual zones activate to acquire the current value.

If there is current with the 4 zones OFF, the device is in SSR SHORT condition, but the faulty zone is not identified. If no current is detected with the zone ON (control output = ON), the device is in NO CURRENT condition, corresponding to a possible interrupted load or SSR open or no line voltage or blown fuse. If current flows, the sampled value is saved in variable I.tA1.

The 4 ammeter inputs are IN9, IN10, IN11, IN12, and the current value is found in variable ItA1 for zones 1, 2, 3, 4, respectively.

If diagnostics identifies a fault on the load, the red ER LED starts to flash in sync with yellow LED O1 or O2 or O3 or O4 for the faulty zone.

The condition POWER_FAULT in OR with the HB alarm can be assigned to an alarm or can be identified in the state of a bit in the STA-TUS_INSTRUMENT, STATUS_INSTRUMENT_1, and STATUS_INSTRUMENT_2 variables.

In STATUS_INSTRUMENT_3, you can identify the condition that activated the POWER_FAULT alarm.

The POWER_FAULT diagnostics is configurable with parameter hd.2, with which you can also enable only one of its parts.

With models that have 4 CTs, you can diagnose the following single conditions:

- SSR SHORT: SSR module in short circuit;
- NO VOLTAGE: no line voltage or fuse blown or load interrupted;
- SSR OPEN: SSR module open ;
- HB: load partially interrupted.

With models that have 1 CT, you can diagnose the following conditions:

- SSR SHORT: SSR module in short circuit;
- NO CURRENT: load interrupted or SSR open or no line voltage or fuse blown;
- HB: load partially interrupted.

For a zone with single-phase load, the default value of the maximum limit or full scale of the current transformer (H.tA1) depends on the model, and equals 20.0A (30 kW model), 40.0A (60 kW model) or 60.0A (80 kW model). Parameters for correction of offset (o.tA1) and for the digital filter (Ft.tA) refer to the ammeter input.
If zone 1 has a 3-phase load, the following parameters are significant:

- I.tA1, I.tA2 and I.tA3: ammeter value on line L1, L2 and L3, respectively;
- I.AF1, I.AF2 and I.AF3: filtered ammeter value (see Ft.tA) on line L1, L2 and L3;
- I1on, I2on and I3on: current with control O1 on (ON) on line L1, L2 and L3;
- H.tA1, H.tA2 and H.tA3: maximum limit or full scale of current transformer on line L1, L2 and L3;
- o.tA1, o.tA2 and o.tA3 = offset correction for ammeter input on line L1, L2 and L3;
- Ft.tA = digital filter for ammeter input.

Scale Limits

Setting the Offset

220	－．1R ！	R／W	Offset correction CT input （phase 1）	－99．9 ．．．99．9 Scale points		0.0
415	－ヒคコ	R／W	Offset correction CT input （phase 2）	－99．9 ．．．99．9 Scale points	With 3－Phase Load	0.0
414	ロ．上号〕	R／W	Offset correction CT input （phase 3）	－99．9 ．．． 99.9 Scale points	With 3－Phase Load	0.0

Read State

$\begin{gathered} 227 \\ 473-139 \end{gathered}$	1．上R	R	Instantaneous CT input value（phase 1）
490	1．上号	R	Instantaneous CT input value（phase 2）
491	1．上冓き	R	Instantaneous CT input value（phase 3）
468	1．上冓こ	R	CT input value with output on（phase 1）
498	1．コロп	R	CT input value with output on（phase 2）
499	1．Jロn	R	CT input value with output on（phase 3）

Not significant if there is only 1 C
（refers to l．1On）
:---:
only 1 CT（refers to I．3On）

Advanced Settings

Input Filter

| 219 | FL．LR | R／W | CT input digital filter
 （phases 1，2 and 3） | $0.0 \ldots 20 \mathrm{sec}$ | 0.0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Sets a low pass filter on the CT auxiliary input，running the average of values read in the specified time interval． If $=0$ ，excludes the average filter on sampled values．

Input Sampling Interval

661	df．t．	R／W	CT input sampling interval	$10 \ldots 999$ sec	Only for C4 1TA	10

Sets an interval for the sampling load current value for activation of the SSR＿SHORT and NO＿CURRENT alarms（see：Power Fault ALARMS）．

Functional Diagram

Voltage Value on the Load (Voltmeter)

The voltage read value is present for each zone only on models with 4 CTs (C4-x-x-2-x-x and C4-x-x-4-xx), and is used to monitor voltage applied to a singlephase or 3-phase load, with automatic recognition of the internal voltmeter transformer.
The value of the voltage applied to the load is saved in variable I.tV1. For each phase, the voltage value is updated while the control output is inactive, otherwise, the value is frozen at the last valid read.
The voltmeter function is significant with:

- 4 independent zones with 4 single-phase loads;
- 1 zone with 3 -phase star load with neutral +1 sin-gle-phase zone;
- 1 zone with 3-phase load with open triangle +1 single-phase zone.

For a zone with single-phase load, the default value of the maximum limit or full scale of the volumetric value (H.tV1) is 530 V , and the input is linear on the interval 90...530V. The parameters for correction of offset (o.tV1) and the digital filter (Ft. tV) refer to the voltmeter input.
If zone 1 has a 3-phase load, the following parameters are not significant:

- I.tV1, I.tV2 and I.tV3: voltmeter value on line L1, L2 and L3, respectively;
- I.VF1, I.VF2 and I.VF3: filtered voltmeter value (see Ft.tV) on line L1, L2 and L3;
- H.tV1, H.tV2 and H.tV3: maximum limit or full scale of voltage transformer on line L1, L2 and L3;
- o.tV1, o.tV2 and o.tV3 = offset correction for voltmeter input on line L1, L2 and L3;
- Ft.tV = digital filter for voltmeter input.

NOTE: For load voltage below 90Vac, the voltage read on the load and possible alarms have no value.

Scale Limits

410	HE景！	R／W	Maximum scale limit of voltage transformer TV input（phase 1）	0.0 ．．． 999.9		530.0
417	HEH3	R／W	Maximum scale limit of voltage transformer TV input（phase 2）	0.0 ．．． 999.9	with 3－Phase Load	530.0
418	H上吅	R／W	Maximum scale limit of voltage transformer TV input（phase 3）	0.0 ．．． 999.9	with 3－Phase Load	530.0

Setting the Offset

411	因景！	R／W	Offset correction TV input （phase 1）	－99．9 ．．．99．9 Scale points		0.0
419	－6迥	R／W	Offset correction TV input （phase 2）	-99.9 ...99.9 Scale points	With 3－Phase Load	0.0
420	ロヒ113	R／W	Offset correction TV input （phase 3）	-99.9...99.9 Scale points	With 3－Phase Load	0.0

Read State

$\begin{array}{r} 232 \\ 485 \end{array}$	尤㨁！	R	Value of voltmeter input （phase 1）	
492	以吅	R	Value of voltmeter input （phase 2）	With 3－Phase Load
493	尤比〕	R	Value of voltmeter input （phase 3）	With 3－Phase Load

Advanced Settings

Input Filter

412	FL．E！	R／W	Digital filter for auxiliary TV input（phase 1， 2 and 3）	$0.0 \ldots 20$ sec		0.0

Sets a low pass filter on the auxiliary TV input， running the average of values

Functional Diagram

Auxiliary Analog Input (LIN/TC)

The C4 has 4 inputs defined as auxiliary (IN5 for zone 1, IN6 for zone 2, IN7 for zone 3, IN8 for zone 4) to which TC or linear temperature sensors can be connected. The presence of these inputs is optional.
The input value, saved in variable $\ln .2$, can be read and used to activate the alarm signals assigned to it.
When an auxiliary input is present, you have to define the following parameters:

- sensor type (AI.2);
- its function (tP.2);
- decimal point position (dP.2);
- scale limits (HS. 2 - LS.2);
- offset correction value (oFS.2).

If the sensor is a thermocouple, the minimum and maximum limits can be defined in the specific scale of the sensor used. The range of values settable for alarm setpoints depends on these limits.
There is also a digital filter (Flt.2) that can be used to reduce noise on the input signal.

NOTE: Calibrate the UCA inputs by means of the C4-OP terminal. The procedure is described in the C4-OP manual.

Auxiliary Inputs Sensors Table				
Type	Type of Probe or Sensor	Without Dec. Point	With Dec. Point	0
0	TC J ${ }^{\circ} \mathrm{C}$	$0 / 1000$	$0.0 / 999.9$	
1	TC J $^{\circ} \mathrm{F}$	$32 / 1832$	$32.0 / 999.9$	
2	TC K $^{\circ} \mathrm{C}$	$0 / 1300$	$0.0 / 999.9$	
3	TC K $^{\circ} \mathrm{F}$	$32 / 2372$	$32.0 / 999.9$	
4	TC R $^{\circ} \mathrm{C}$	$0 / 1750$	$0.0 / 999.9$	
5	TC R $^{\circ} \mathrm{F}$	$32 / 3182$	$32.0 / 999.9$	
6	TC S $^{\circ} \mathrm{C}$	$0 / 1750$	$0.0 / 999.9$	
7	TC S $^{\circ} \mathrm{F}$	$32 / 3182$	$32.0 / 999.9$	
8	TC T $^{\circ} \mathrm{C}$	$-200 / 400$	$-199.9 / 400.0$	
9	TC T $^{\circ} \mathrm{F}$	$/ 328 / 752$	$-199.9 / 752.0$	
34	$0 \ldots 60 \mathrm{mV}$	$-1999 / 9999$	$-199.9 / 999.9$	
35	$0 \ldots 60 \mathrm{mV}$	Custom	Custom	
36	$12 \ldots 60 \mathrm{mV}$	$-1999 / 9999$	$-199.9 / 999.9$	
37	$12 \ldots 60 \mathrm{mV}$	Custom	Custom	
99	Input Off	Linearization	Linearization	

Table of Auxiliary Input Functions				
tP. 2	Aux. Input Function	Limits for Setting the LS. 2 \& HS. 2		0
		Min.	Mac	
0	None	-1999	9999	
1	Remote Setpoint	Absolute Lo.S, Deviation -999	Absolute Hi.S Deviation +999	(*)
2	Manual Analog Remote	-100.0\%	+100.0\%	(*)
3	Reset Analog Power	-100.0\%	+100.0\%	(**)

(*) See Settings: Control Setpoint (**) See Controls: PID Parameters

Specifies the number of decimal figures used to represent the input signal value：for example， 875.4 $\left({ }^{\circ} \mathrm{C}\right)$ with DP．S $=1$

Decimal Point Table		
dp．2	Format	
0	xxxx	
1	xxx．x	
2	xx．xx（＊）	
3	x．xxx（＊）	
（＊）Not available for TC probes		

Min．．．max input scale selected in Al．2 e tP．2	0
Min．．．max input scale selected in Al．2 e tP．2	1000

Setting the Offset

605	ロF．コ．	R／W	Offset for auxiliary input correction	$-999 \ldots 999$ Scale Points	0

Read State

602	门口 ב	R	Value of Auxiliary Input
606	Er．a	R	Error code for self－diagnosis of auxiliary input

Error Code Table	Description	
0	No error	
1	LO	Value of process variable is $<$ Lo．S
2	HI	Value of process variable is $>$ Hi．S
3	ERR	Third wire interrupted for PT100 or input values below minimum limits （ex．：for TC with connection error）
4	SBR	Probe interrupted or input values beyond maximum health

Advanced Settings

Input Filter


```
0．0．．． 20.0 sec
```

Sets a low pass filter on the auxiliary input，running the average of values read in the specified time internal．
If $=0$ ，excludes the average filter on sampled values

Functional Diagram

Digital Inputs

There are always two inputs. Each input can perform various functions based on the setting of the following parameters:

Read State

Using a Function Associated with Digital Input and Via Serial

At power-on or on the leading edge of digital input 1 or 2 , all zones assume the state set by the digital input. For each zone, this state can be changed by writing via serial.
The setting via serial is saved in eeprom (STATUS_W_EEP, address 698).

State AB	Setting dIG. 1 or dIG. 2	Address for Writing via Serial	
		Access at 16 Bits	Access at 1Bit
AUTO/MAN controller	1 word 305	bit 4	bit 1
LOC/REM setpoint	2 word 305	bit 6	bit 10
SP1/SP2 setpoint	5 word 305	bit 1	bit 75
ON/OFF software	6 word 305	bit 3	bit 11
STOP/START selftuning	8 word 305	bit 2	bit 3
STOP/START autotuning *	9 word 305	bit 5	bit 29

* continuous or one-shot.

Using a Function of Digital Input 1 to Enable at Software On

Software ON can be configured either by enabling a digital input or by writing via serial. Enabling by digital input 1 1 (diG) is common to all zones, whereas enabling via serial is specific for each individual zone.

The ON/OFF setting via serial is saved in eeprom (STATUS_W_EEP, address 698 bit 3) for resetting of the condition at the next hardware power-on; use parameter P.On.t. to force software always ON or software always OFF at next power-on.

State AB	Setting	Address for Writing via Serial	
		Access at 16 Bits	Access at 1Bit
	13	Word 305 bit 3	Bit 11

Alarms

Generic Alarms AL1, AL2, AL3, and AL4

Generic Alarms AL1, AL2, AL3, and AL4

Four generic alarms are always available and can perform various functions. Typically, alarm AL. 1 is defined as minimum and AL. 2 as maximum.
These alarms are set as follows:

- select the reference variable to be used to monitor the value (parameters A1.r, A2.r, A3.r and A4.r): the origin of the variable can be chosen from the process variable PV (generally linked to the main input), the ammeter input, the voltmeter input, the auxiliary analog input, or the ac-tive setpoint.
- set the value of the alarm setpoint (parameters AL.1, AL.2, AL. 3 and AL.4).

This value is used for comparison with the reference variable value: it can be absolute or indicate a shift from the variable in case of deviation alarm.

For AL1 = normal inverse deviation alarm with negative Hyst 1, AL1 $t=3$
For AL1 = normal direct deviation alarm with negative Hyst 1, AL1 t = 2

- set the hysteresis value for the alarm (parameters Hy.1, Hy.2, Hy. 3 and Hy.4): the hysteresis value defines a band for safe re-entry of the alarm condition: without this band, the alarm would be deactivated as soon as the reference variable re-entered the setpoint limits, with the possibility of generating another alarm signal in the presence of oscillations of the reference signal around the setpoint value.
- select alarm type:
- absolute/deviation: if the alarm refers to an absolute value or to another variable (for example, to the setpoint).
- direct/reverse: if the reference variable exceeds the alarm setpoint in the "same direction" as the control action or not. For example, the alarm is direct if the reference variable exceed the upper setpoint value during heating or assumes values below:

For AL1 $=$ symmetrical inverse absolute alarm with Hyst1, AL1 $t=5$
For AL1 $=$ symmetrical direct absolute alarm with Hyst1, AL1 t $=4$
Minimum hysteresis $=2$ scale points
Symmetrical deviation alarm

For AL1 $=$ Symmetrical inverse deviation alarm with Hyst 1, AL1 $t=7$
For AL1 $=$ Symmetrical direct deviation alarm with Hyst 1, AL1 $t=6$

Reference Variables

Table of Alarm Reference Setpoints			
Type	Variable to be Compared	Reference Setpoint	0
0	PV（process variable）	AL	0
1	in．tA1 AL（In．tA1 OR In．tA2 OR In．tA3 WITH 3－PHASE LOAD）	AL	0
2	In．tV1 AL（In．tV1 OR In．tV2 OR In．tV3 WITH 3－PHASE LOAD）	AL	0
3	SPA（active setpoint）	AL（absolute only）	0
4	PV（process variable）	AL［deviation only and referred to SP1（with multiset function）	
5	In．2 auxiliary input	AL	

N．B．for codes 1， 2 and 5，the reference to the alarm is in scale points and not to the decimal point（d．P）

Alarm Setpoints

Alarm Hysteresis

$\begin{aligned} & 27 \\ & 187 \end{aligned}$	Hり	R／W	Hysterisis for Alarm 1	999 Scale points	$0 . . .999$ sec．Se +32 in A1．t 0．．． 999 min． $\mathrm{Se}+64$ in A1．t	－1
$\begin{aligned} & 30 \\ & 188 \end{aligned}$	Hy3	R／W	Hysterisis for Alarm 2	999 Scale points	$0 . . .999$ sec．Se +32 in A1．t $0 . . .999$ min． $\mathrm{Se}+64$ in A1．t	－1
$\begin{gathered} 53 \\ 189 \end{gathered}$	H」き	R／W	Hysterisis for Alarm 3	999 Scale points	$0 . . .999$ sec． $\mathrm{Se}+32$ in A1．t 0．．． 999 min．Se＋64 in A1．t	－1
59	H34	R／W	Hysterisis for Alarm 4	999 Scale points	$0 . . .999$ sec． $\mathrm{Se}+32$ in A1．t 0．．． 999 min． $\mathrm{Se}+64$ in A1．t	－1

Alarm Type

406	R ！．上	R／W	Alarm Type 1
407	Rコ．	R／W	Alarm Type 2
408 (54)	Rコ．上	R／W	Alarm Type 3
409	R4．上	R／W	Alarm Type 4

Table of Alarm behaviour				
AL．x．t	Direct（High Limit） Inverse（Low Limit）	Absolute Relative to Active Setpoint	Normal Symmetrical （Window）	0
0	direct	absolute	normal	
1	inverse	absolute	normal	0
2	direct	relative	normal	0
3	inverse	relative	normal	0
4	direct	absolute	symmetrical	0
5	inverse	absolute	symmetrical	0
6	direct	relative	symmetrical	0
7	inverse	relative	symmetrical	

－ 8 to disable at switch－on until first setpoint +16 to enable memory latch
－ 32 Hys becomes delay time for activation of alarm（ $0 . . .999 \mathrm{sec}$ ．） （excluding absolute symmetrical）
－ 64 Hys becomes delay time for activation of alarm（0．．． 999 min．） （excluding absolute symmetrical）
－ 136 to disable at switch－on or at change of setpoint until first setpoint
－ 256 only for alarms with memory and delay time：the delay time becomes a timed hysteresis（with time stopped in case of SBR condition：when SBR condition disappears the delay time starts counting from zero）

46 bit	AL1 Direct／Inverse	R／W
47 bit	AL1 Absolute／Relative	R／W
48 bit	AL1 Normal／Symmetrical	R／W
49 bit	AL1 Disabled at Switch－On	R／W
50 bit	AL1 with Memory	R／W
54 bit	AL2 Direct／Inverse	R／W
55 bit	AL2 Absolute／Relative	R／W
56 bit	AL2 Normal／Symmetrical	R／W
57 bit	AL2 Disabled at Switch－On	R／W
58 bit	AL2 With Memory	R／W
36 bit	AL3 Direct／Inverse	R／W
37 bit	AL3 Absolute／Relative	R／W
38 bit	AL3 Normal／Symmetrical	R／W
39 bit	AL3 Disabled at Switch－On	R／W
40 bit	AL3 With Memory	R／W
70 bit	AL4 Direct／Inverse	R／W

Limits of Absolute Alarm Settings

$\begin{gathered} 25 \\ 20-28-142 \end{gathered}$	L⿴囗口⿺𠃊⿻丷木斤丶	R／W	Lower settable limit SP，SP remote and absolute alarms	Lo．S．．．Hi．S	See：SETTINGS－Setpoint Control	0
$\begin{gathered} 26 \\ 21-29-143 \end{gathered}$	hi．	R／W	Upper settable limit SP，SP remote and absolute alarms	Lo．S．．．Hi．S		1000

Enable Alarms

195	M.	R/W	Select Number of Enabled Alarms	Table of Enabled Alarms					
				AL.nr	Alarm 1	Alarm 2	Alarm 3	Alarm 4	0
				0	disabled	disabled	disabled	disabled	
				1	enabled	disabled	disabled	disabled	
				2	disabled	enabled	disabled	disabled	
				3	enabled	enabled	disabled	disabled	
				4	disabled	disabled	enabled	disabled	
				5	enabled	disabled	enabled	disabled	
				6	disabled	enabled	enabled	disabled	
				7	enabled	enabled	enabled	disabled	
				8	disabled	disabled	disabled	enabled	
				9	enabled	disabled	disabled	enabled	
				10	disabled	enabled	disabled	enabled	
				11	enabled	enabled	disabled	enabled	
				12	disabled	disabled	enabled	enabled	
				13	enabled	disabled	enabled	enabled	
			+16 to enable HB alarm	14	disabled	enabled	enabled	enabled	
			+ 32 to enable LBA alarm	15	enabled	enabled	enabled	enabled	

Reset Memory Latch

Read State

4 bit	State of Alarm 1	R	OFF = Alarm off ON = Alarm on
5 bit	State of Alarm 2	R	OFF = Alarm off ON = Alarm on
62 bit	State of Alarm 3	R	OFF = Alarm off ON = Alarm on
69 bit	State of Alarm 4	R	OFF = Alarm off ON = Alarm on

\square
318 R \quad State of Alarms ALSTATE IRQ

0 ...255	States of Alarms Table
bit	
0	State AL.1
1	State AL.2
2	State AL.3
3	State AL.4
4	State AL.HB (if 3-phase or phase 1/2/3) or Power Fault
5	State AL.HB PHASE 1 (if 3-phase)
6	State AL.HB FASE 2 (if 3-phase)
7	State AL.HB FASE 3 (if 3-phase)

Functional Diagram

LBA Alarm (Loop Break Alarm)

LBA is an alarm type that monitors the overall control loop status of the Process Value, the status of the outputs, and compares them for monitoring the system.
LBA alarm will identify incorrect functioning of the control loop due to a possible short relay, open relay, heater element failure, shorted probe, or incorrectly positioned probe, or reversed probe.
It is best suited for startups of equipment from cold where situation when possible components have failed or may have been moved. LBA can be used in heating or cooling applications.

Do not use LBA as a replacement for safety or over temperature protection.

With the alarm enabled (parameter AL.n), the instrument checks that in condition of maximum power delivered for a settable time (Lb.t) greater than zero, the value of the process variable increases in heating or decreases in cooling: if this does not happen, the LBA alarm trips. In these conditions, power is limited to value (Lb.P).
The alarm condition resets if the temperature increases in heating or decreases in cooling.

Enable Alarm

195	H.		R/W		number of ed alarms	See Table of Enabled Alarms		0
44	Ĺb.		R/W	Delay	for tripping LBA Alarm	$\begin{gathered} 0.0 \ldots 500.0 \\ \quad \min \end{gathered}$	If Lb.t $=0$, the LBA alarm is disabled	30.0
119	Lロ.P	R/W	Limitation of power delivered in presence of LBA alarm			-100.0 ..100.		25.0
81 bit	Reset LBA Alarm			R/W				

Read State

| 8 |
| :---: | :---: | :---: | :---: |
| bit |\quad State of LBA Alarm \quad R | OFF = LBA Alarm off |
| :--- |
| ON = LBA Alarm on |

Functional Diagram

HB Alarm (Heater Break Alarm)

This alarm monitors and identifies the actual current that is on the heater load by means of a current transformer (CT). In the C4, it can be either one or four CT's. In the C4X, it is external mounted CT's.
HB Alarm is monitoring on three fault situations. Actual current level is lower than the alarm setting. This usually indicates that a partial failure or complete failure of the heating element.
Actual current level is higher than rated or expected load. This may indicate partial short circuits of the heating element.
Current is present at the heating element when the output to the heating element is off. An possible indication of shorted relay contacts, or short power to the heating element.

In a standard configuration, output OUT1 is associated to heating control in zone 1, obtained by modulating electrical power with the ON/OFF control based on the set cycle time.
A current reading is performed during the ON phase identifies an anomalous shift from the rated value due to a load break (first two fault situations described above), while the current read performed during the OFF phase identifies a break in the control re-lay, with consequent output always active (third fault situation).
The alarm is enabled by means of parameter AL.n; select the type of function you want by means of parameter Hb.F:

Hb.F=0: alarm activates if the current load value is below the setpoint value set in A.Hbx while the associated control out-put is ON.

Hb.F=1: alarm activates if the current load value is above the setpoint value set in A.Hbx while the associated control out-put is OFF.

Hb.F=2: alarm activates by combining functions 0 and 1 , considering the setpoint of function 1 as 12% of the ammeter full scale defined in H.tAx.
$\mathrm{Hb} . \mathrm{F}=3$ or Hb.F=7 (continuous alarm): alarm activates due to a load current value below the setpoint value set in A.Hbx; this alarm does not refer to the cycle time and is disabled if the heating (cooling) output value is below 3\%.

Setting A.Hbx = 0 disables both types of HB alarm by forcing deactivation of the alarm state.
The alarm resets automatically if its cause is eliminated.
An additional configuration parameter for each zone, related to the HB alarm is:

Hb.t = delay time for activation of HB alarm, understood as the sum of times for which the alarm is considered active.

For example, with:

- Hb.F = 0 (alarm active with current below setpoint value),
$-\mathrm{Hb} . \mathrm{t}=60 \mathrm{sec}$ and cycle time of control output $=10$ sec,
- power delivered al 60\%, the alarm will activate after 100 sec (output ON for 6 sec each cycle);
if power is delivered at 100%, the alarm will activate after 60 sec .
If the alarm deactivates during this interval, the time sum is reset.
The delay time set in Hb.t must exceed the cycle time of the associated output.
If zone 1 has a 3-phase load, you can set three different setpoints for the HB alarm:
A.Hb1 = alarm setpoint for line L1
A. Hb2= alarm setpoint for line L2
A.Hb3 = alarm setpoint for line L3

Enable Alarm

195	最, 斤	R/W	Select number of enabled alarms
57	H6.F	R/W	HB Alarm Functions
Default: SINGLE-PHASE LOAD: each A.HbX refers to its respective phase. 2-PHASE LOAD: single reference setpoint A.Hb1 and OR between phases 1, 2 and phases 3, 4. 3-PHASE LOAD: single reference setpoint A.Hb1 and OR among phases 1, 2 and 3.			
+8 HB reverse alarm +16 relates to single setpoints and singled phases WITH 3-PHASE LOAD			

| See Table of Enabled Alarms | | |
| :---: | :--- | :---: | 00

R/W Delay time for activation of HB Alarm
The value must exceed the cycle time of the 0 ... 999 sec output to which the HB alarm is

Alarm Setpoints

55	是腷	R/W	HB alarm setpoint (scale points ammeter input - Phase 1)		10.0
502	R. HEE	R/W	HB alarm setpoint (scale points ammeter input - Phase 2)	With 3-phase load	10.0
503	R, M 3	R/W	HB alarm setpoint (scale points ammeter input - Phase 3)	With 3-phase load	10.0

Read State

Read State

Alarm SBR—ERR (Probe in short or connection error)

This alarm is always ON and cannot be deactivated. It controls correct functioning of the probe connected to the main input.
In case of broken probe:

- the state of alarms AL1, AL2, AL3, and AL4 is set based on the value of parameter rEL;
- control power control is set to the value of parameter FAP.
Identification of the type of break detected on the main input is contained in Err.

Enable Alarm

229 FEL \quad R/W | Fault action (definition of state |
| :---: | :---: | :---: |
| in case of broken probe) Sbr, Err |
| Only for main input |

Table of Probed Alarm Settings					0	
rEL						
0	Alarm 1	Alarm 2	Alarm 3	Alarm 4		
1	OFF	OFF	OFF	OFF		
2	ON	OFF	OFF	OFF		
3	ON	ON	OFF	OFF		
4	OFF	OFF	OFF	OFF		
5	ON	OFF	OFF			
6	OFF	ON	ON	OFF		
7	ON	ON	ON	OFF		
8	OFF	OFF	OFF	ON		
9	ON	OFF	OFF	ON		
10	OFF	ON	OFF	ON		
11	ON	ON	OFF	ON		
12	OFF	OFF	ON	ON		
13	ON	OFF	ON	ON		
14	OFF	ON	ON	ON		
15	ON	ON	ON	ON		FR.PR/W

Fault Action Power (supplied in conditions of broken probe)

```
\(-100.0 . .100 .0 \%\)
``` see: SPECIALIZED CONTROL FUNCTIONS

Read State

\section*{Functional Diagram}

Power Fault Alarms (SSR Short, No_Voltage, SSR_Open and No_Current) C4 With 4 Current Transformers
660 hd. コ R/W

32 Alarms with memory
NOTE: The NO_CURRENT alarm setpoint is fixed at 1A
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Table of Power Fault Alarms} & \\
\hline Hd. 2 & SSR Short & NO_VOLTAGE & SSR Open & NO_CURRENT & \\
\hline 0 & & & & & \\
\hline 1 & X & & & & \\
\hline 2 & & X & & & \\
\hline 3 & X & X & & & \\
\hline 4 & & & X & & \\
\hline 5 & X & & X & & \\
\hline 6 & & X & X & & \\
\hline 7 & X & X & X & & \\
\hline 8 & & & & X & \\
\hline 9 & X & & & X & \\
\hline 10 & & X & & X & \\
\hline 11 & X & X & & X & \\
\hline 12 & & & X & X & \\
\hline 13 & X & & X & X & \\
\hline 14 & & X & X & X & \\
\hline 15 & X & X & X & X & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 661 & dif. & R/W & \begin{tabular}{l}
Refresh rate SSR Short \\
The alarm activates after 3 faults.
\end{tabular} & 1... 999 sec & 0 \\
\hline \multirow[t]{4}{*}{662} & dif. F & R/W & Time filter for NO_VOLTAGE, SSR_OPEN and NO_CURRENT alarms. Note: set a value not inferior to cycle time. & 1... 999 sec & 0 \\
\hline & & & Note: With output power at \(100 \%\), NO_VOLTAGE alarm in diagnostic is detected only if an SSR SHORT code is active. & & \\
\hline & & & Note related to the parameter dG.t only with 4CT *For dG.t < 10 sec, the SSR SHORT alarm is detected every dG.t seconds only when power \(=0 \%\) & & \\
\hline & & & *For dG.t > 10 sec, the SSR SHORT alarm is detected every dG.t seconds switching off the power for 60 msec , independently from the power value. & & \\
\hline
\end{tabular}

\section*{C4 With 1 Current Transformers}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Table of Power Fault Alarms} & \multirow{2}{*}{0} \\
\hline Hd. 2 & SSR Short & NO_VOLTAGE & SSR Open & NO_CURRENT & \\
\hline 0 & & & & & \\
\hline 1 & X & & & & \\
\hline 2 & & & & & \\
\hline 3 & X & & & & \\
\hline 4 & & & & & \\
\hline 5 & X & & & & \\
\hline 6 & & & & & \\
\hline 7 & X & & & & \\
\hline 8 & & & & X & \\
\hline 9 & X & & & X & \\
\hline 10 & & & & X & \\
\hline 11 & X & & & X & \\
\hline 12 & & & & X & \\
\hline 13 & X & & & X & \\
\hline 14 & & & & X & \\
\hline 15 & X & & & X & \\
\hline \multicolumn{4}{|l|}{R SHORT, and NO_CURRENT alarms activates after 3 faults} & 1... 999 sec & 0 \\
\hline \multicolumn{4}{|l|}{sition in CT and for NO_CURRENT alarm} & 0.0...100.0\% & 10 \\
\hline
\end{tabular}

Note: With output power <dG.P the SSR SHORT alarm in diagnostic is not detected
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{c|}{ Table of Power Fault Alarms } & \multirow{2}{*}{0} \\
\hline Hd.2 & SSR Short & NO_VOLTAGE & SSR Open & NO_CURRENT & \\
\hline 0 & & & & & \\
\hline 1 & X & & & & \\
\hline 2 & & & & & \\
\hline 3 & X & & & \\
\hline 4 & & & & \\
\hline 5 & X & & & \\
\hline 6 & & & & X \\
\hline 7 & X & & \\
\hline 8 & & & & X \\
\hline 9 & X & & & \\
\hline 10 & & & & X \\
\hline 11 & X & & & \\
\hline 12 & & & & X \\
\hline 13 & X & & & & \\
\hline 14 & & & & & \\
\hline 15 & X & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 661 & d5.t & R/W & \begin{tabular}{l}
Refresh rate SSR Short \\
The alarm activates after 3 faults.
\end{tabular} & 1... 999 sec & 0 \\
\hline 662 & dif.F & R/W & Time filter for NO_CURRENT alarms NOTE: set a value not inferior to cycle time. & 1... 999 sec & 0 \\
\hline
\end{tabular}

Read State
\begin{tabular}{|c|l|c|}
\hline 105 bit & Reset SSR_OPEN / SSR_SHORT / NO_VOLTAGE / NO_CURRENT alarms & R/W \\
\hline 93 bit & State of alarms SSR_OPEN phase 1 & R \\
\hline 94 Bit & State of alarms SSR_OPEN phase 2 & R \\
\hline 95 Bit & State of alarms SSR_OPEN phase 3 & R \\
\hline 96 Bit & State of alarms SSR_SHORT phase 1 & R \\
\hline 97 Bit & State of alarms SSR_SHORT phase 2 & R \\
\hline 98 Bit & State of alarms SSR_SHORT phase 3 & R \\
\hline 99 Bit & State of alarms NO_VOLTAGE phase 1 & R \\
\hline 100 Bit & State of alarms NO_VOLTAGE phase 2 & R \\
\hline 101 Bit & State of alarms NO_VOLTAGE phase 3 & R \\
\hline 102 Bit & State of alarms NO_CURRENT phase 1 & R \\
\hline 103 Bit & State of alarms NO_CURRENT phase 2 & R \\
\hline 104 bit & State of alarms NO_CURRENT phase 3 & R \\
\hline
\end{tabular}

\section*{Overheat Alarm}

The C4 and C4-IR has an internal heat sink that is temperature monitored and can disable the outputs when an overheat condition is met. The overheat alarm is not programmable but is a read only parameter within communications parameters. The Overheat Alarm is for the protection of the power control hardware in the C4. There are two type of methods that the overheat temperature is monitored. In each case the outputs 1, 2, 3, 4 will be disabled.
* Temperature exceeds \(85^{\circ} \mathrm{C}\)

The C4 will reset this alarm once the heat sink temperature falls below \(75^{\circ} \mathrm{C}\).
* Temperature rise of \(7^{\circ} \mathrm{C}\) in 12 seconds.

\section*{Outputs}

The modular power controller has high flexibility in the assignment of functions to the physical outputs. As a result, the instrument can be used in sophisticated applications.
A function is assigned to each physical output in two steps: first assign the function to one of internal reference signals rL. 1 .. rL. 6 , and then attribute the reference signal to parameters out. 1 .. out. 10 (corresponding to physical outputs OUT1 .. OUT10).
In standard configuration, physical outputs Out1, Out2, Out3, Out4 perform the heating control function (Heat) for zone 1, zone 2, zone 3 and zone 4, respectively; value 0 (function HEAT) is assigned to reference signals rL. 1 in each zone, and the following values to the output parameters: out.1=1 (output rL. 1 zone 1), out.2=2 (output rL. 1 zone 2), out.3=3 (output rL. 1 zone 3) and out. \(4=4\) (output rL. 1 zone 4).
Physical outputs Out5, Out6, Out7, Out8 are optional, and the type (relay, logic, continuous or triac) is defined by the order code. In standard configuration, these outputs perform the cooling control function (Cool) for zone 1, zone 2, zone 3 and zone 4, respectively. In this configuration, value 1 (function COOL) is assigned to reference signals rL. 2 in each zone, and the following values to the output parameters: out.5=5 (output rL. 2 zone 1), out. \(6=6\) (output rL. 2 zone 2), out. \(7=7\) (output rL. 2 zone 3) and out. \(8=8\) (output rL. 2 zone 4).

Relay outputs Out9 and Out10 are always present, programmable by means of parameters out. 9 and out.10, to which available alarm signal functions are assigned by means of the four reference signals rL.3, rL.4, rL.5, rL. 6 in each zone.
Standard configuration has the following assignments:
- reference signals: rL.3=2 (function AL1), rL.4=3 (function AL2), rL.5=4 (function AL3) and rL.6=5 (function AL.HB or POWER_FAULT with HB alarm).
- output parameters: out. \(9=17\) and out. \(10=18\).

In this way, the state of output physical Out9 is given by the logic OR of AL1, AL3 in each zone, and the state of output Out10 is given by the logic AND of AL2, AL.HB in each zone.
Each output can always be disabled by setting parameter out. \(x=0\).
The state of outputs Out1, ...,Out10 can be acquired by serial communication by means of bit variables.
The following additional configuration parameters are related to the outputs:
Ct. 1 = cycle time for output rL. 1 for heating control (Heat). See SETTINGS
Ct. 2 = cycle time for output rL. 2 for cooling control (Cool). See SETTINGS
rEL = alarm states AL1, AL2, AL3, AL4 in case of broken probe, Err, Sbr. See Generic Alarms

\section*{Allocation of Reference Signals}
\begin{tabular}{l|l|l|l|}
\hline 160 & rL. . & R/W & Allocation of reference signal \\
\hline 163 & rL_ . . & R/W & Allocation of reference signal
\end{tabular}

NOTE: Parameters rL.1, ..., rL. 6 for each zone can be considered as internal states.
Ex.: To assign alarm AL1 to physical output OUT5, assign rL.1-Zone1=2 (AL1-alarm 1) and than assign parameter out.5=1 (rL.1-Zone1)
+ 32 for logic level denied in output
+128 to force output to zero
NOTE: continuous COOL OUTPUTS can be assigned codes \(0,1,64\) and 65 only, with cycle time fixed at 100 ms
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|r|}{Table of Reference Signals} & 0 \\
\hline Value & Function & 0 \\
\hline 0 & HEAT (heating control output) / in case of continuous output 0... \(20 \mathrm{~mA} / 0 . . .10 \mathrm{~V}\) & 1 \\
\hline 1 & COOL (cooling control output) / in case of continuous output 0...20mA / 0...10V & \\
\hline 2 & AL1 - alarm 1 & \\
\hline 3 & AL2 - alarm 2 & \\
\hline 4 & AL3 - alarm 3 & \\
\hline 5 & AL.HB or POWER_FAULT with HB alarm (TA1 OR TA2 OR TA3) & \\
\hline 6 & LBA - LBA alarm & \\
\hline 7 & IN1 - repetition of logic input DIG1 & \\
\hline 8 & AL4 - alarm 4 & \\
\hline 9 & AL1 or AL2 & \\
\hline 10 & AL1 or AL2 or AL3 & \\
\hline 11 & AL1 or AL2 or AL3 or AL4 & \\
\hline 12 & AL1 and AL2 & \\
\hline 13 & AL1 and AL2 and AL3 & \\
\hline 14 & AL1 and AL2 and AL3 and AL4 & \\
\hline 15 & AL1 or AL.HB or POWER_FAULT with HB alarm (TA1 OR TA2 OR TA3) & \\
\hline 16 & AL1 or AL2 or (AL.HB or POWER_FAULT) with HB alarm (TA1 OR TA2 OR TA3) & \\
\hline 17 & AL1 and (AL.HB or POWER_FAULT) with HB alarm (TA1 OR TA2 OR TA3) & \\
\hline 18 & AL1 and AL2 and (AL.HB or POWER_FAULT) with HB alarm (TA1 OR TA2 OR TA3) & \\
\hline 19 & AL.HB - HB alarm (TA2) & \\
\hline 20 & AL.HB - HB alarm (TA3) & \\
\hline 21 & Setpoint power alarm & \\
\hline 22 & AL.HB - HB alarm (TA1) & \\
\hline 23 & POWER_FAULT & \\
\hline 24 & IN2 - repetition of logic input DIG2 & \\
\hline 64 & HEAT (heating control output) with fast cycle time 0.1 ... 20.0 sec . / in case of continuous output \(4 \ldots 20 \mathrm{~mA} / 2 . . .10 \mathrm{~V}\) & \\
\hline 65 & COOL (cooling control output) with fast cycle time 0.1 ... 20.0 sec . / in case of continuous output \(4 \ldots 20 \mathrm{~mA} / 2 \ldots 10 \mathrm{~V}\) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 166 & 「1．3 & R／W & Allocation of reference signal & Value & Function & \\
\hline & & & & 2 & AL1－alarm 1 & 2 \\
\hline 170 & ri．4 & R／W & Allocation of reference signal & 3 & AL2－alarm 2 & \\
\hline & & & & 4 & AL3－alarm 3 & \\
\hline 171 & 「1． & R／W & Allocation of reference signal & 5 & AL．HB or POWER＿FAULT w／HB alarm（TA1 OR TA2 OR TA3） & 35 \\
\hline & & & & 6 & LBA－LBA alarm & \\
\hline 172 & 「1．F & R／W & Allocation of reference signal & 7 & IN1－repetition of logic input DIG1 & \\
\hline & & & & 8 & AL4－alarm 4 & 4 \\
\hline & & & & 9 & AL1 or AL2 & 4 \\
\hline & & & & 10 & AL1 or AL2 or AL3 & \\
\hline & & & & 11 & AL1 or AL2 or AL3 or AL4 & \\
\hline & & & & 12 & AL1 and AL2 & 160 \\
\hline & & & & 13 & AL1 and AL2 and AL3 & \\
\hline & & & & 14 & AL1 and AL2 and AL3 and AL4 & \\
\hline & & & & 15 & AL1 or AL．HB or POWER＿FAULT with HB alarm（TA1 OR TA2 OR TA3） & \\
\hline & & & & 16 & AL1 or AL2 or（AL．HB or POWER＿FAULT）with HB alarm （TA1 OR TA2 OR TA3） & \\
\hline & & & & 17 & AL1 and（AL．HB or POWER＿FAULT）with HB alarm（TA1 OR TA2 OR TA3） & \\
\hline & & & & 18 & AL1 and AL2 and（AL．HB or POWER＿FAULT）with HB alarm （TA1 OR TA2 OR TA3） & \\
\hline & & & & 19 & AL．HB－HB alarm（TA2） & \\
\hline & & & & 20 & AL．HB－HB alarm（TA3） & \\
\hline & & & & 21 & Setpoint power alarm & \\
\hline & & & & 22 & AL．HB－HB alarm（TA1） & \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
+32 for logic level denied in output \\
+128 to force output to zero
\end{tabular}}} & 23 & POWER＿FAULT & \\
\hline & & & & 24 & IN2－repetition of logic input DIG2 & \\
\hline
\end{tabular}

Read State
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
308 \\
319
\end{tabular} & & \multicolumn{2}{|c|}{ R } & \multicolumn{2}{|c|}{ State of outputs rL．x MASKOUT } \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline \(0 \ldots 63\) & \\
\hline Bit & \\
\hline 0 & Stable rL． 1 \\
\hline 1 & State rL． 2 \\
\hline 2 & State rL． 3 \\
\hline 3 & State rL．4 \\
\hline 4 & State rL．5 \\
\hline 5 & State rL． 6 \\
\hline
\end{tabular}

\section*{Allocation of Physical Outputs}
\begin{tabular}{|c|c|c|c|}
\hline 607 & Qut． 1 & R／W & Allocation of physical output OUT 1 \\
\hline 608 & －ut．已 & R／W & Allocation of physical output OUT 2 \\
\hline 609 & －ut．コ & R／W & Allocation of physical output OUT 3 \\
\hline 610 & qut． 4 & R／W & Allocation of physical output OUT 4 \\
\hline 611 & out． 5 & R／W & Allocation of physical output OUT 5 \\
\hline 612 & －ut． 6 & R／W & Allocation of physical output OUT 6 \\
\hline 613 & －ut． 7 & R／W & Allocation of physical output OUT 7 \\
\hline 614 & －ut． B & R／W & Allocation of physical output OUT 8 \\
\hline 615 & －ut． 9 & R／W & Allocation of physical output OUT 9 \\
\hline 616 & 吅险 & R／W & Allocation of physical output OUT 10 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & Table of output allocations & 1 \\
\hline 0 & Output disabled & 2 \\
\hline 1 & Output rL． 1 zone 1 & \\
\hline 2 & Output rL． 1 zone 2 & \\
\hline 3 & Output rL． 1 zone 3 & 3 \\
\hline 4 & Output rL． 1 zone 4 & \\
\hline 5 & Output rL． 2 zone 1 & \\
\hline 6 & Output rL． 2 zone 2 & 4 \\
\hline 7 & Output rL． 2 zone 3 & \\
\hline 8 & Output rL． 2 zone 4 & \\
\hline 9 & Output rL． 3 OR rL． 5 zone 1 & 5 \\
\hline 10 & Output rL． 3 OR rL． 5 zone 2 & \\
\hline 11 & Output rL． 3 OR rL． 5 zone 3 & \\
\hline 12 & Output rL． 3 OR rL． 5 zone 4 & 6 \\
\hline 13 & Output rL． 4 AND rL． 6 zone 1 & \\
\hline 14 & Output rL． 4 AND rL． 6 zone 2 & \\
\hline 15 & Output rL． 4 AND rL． 6 zone 3 & 7 \\
\hline 16 & Output rL． 4 AND rL． 6 zone 4 & \\
\hline 17 & Output（rL． 3 OR rL．5）zone 1．．．zone 4 & 8 \\
\hline 18 & Output（rL． 4 AND rL．6）zone 1．．．zone 4 & \\
\hline \multicolumn{3}{|l|}{＋32 to reverse output status only for Logic and Relay output} \\
\hline \multicolumn{2}{|l|}{NOTE：In 3－phase configuration，the state of physical output OUT1 is copied to OUT2 and OUT3．} & 17 \\
\hline \multicolumn{2}{|l|}{In case of COOL OUTPUT \((5,6,7,8)\) are continuous，the same output functionscan not be used on other outputs．} & 18 \\
\hline \multicolumn{2}{|l|}{Ex：If out． \(1=1\)（out rL． 1 zone 1 ）it is not possible to set out． 5 with the samecode，if out． 5 is continuous} & \\
\hline
\end{tabular}

\section*{Read State}
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
& 82 \\
& \text { Bit }
\end{aligned}
\] & State of output OUT 1 & R & OFF＝Output off ON＝Active Output \\
\hline \[
\begin{aligned}
& 83 \\
& \text { Bit }
\end{aligned}
\] & State of output OUT 2 & R & OFF＝Output off ON＝Active Output \\
\hline \[
\begin{aligned}
& 84 \\
& \text { Bit }
\end{aligned}
\] & State of output OUT 3 & R & OFF＝Output off ON＝Active Output \\
\hline \[
\begin{aligned}
& 85 \\
& \text { Bit }
\end{aligned}
\] & State of output OUT 4 & R & OFF＝Output off ON＝Active Output \\
\hline \[
\begin{aligned}
& 86 \\
& \text { Bit }
\end{aligned}
\] & State of output OUT 5 & R & OFF＝Output off ON＝Active Output \\
\hline \[
\begin{aligned}
& 87 \\
& \text { Bit }
\end{aligned}
\] & State of output OUT 6 & R & OFF＝Output off ON＝Active Output \\
\hline \[
\begin{aligned}
& 88 \\
& \text { Bit }
\end{aligned}
\] & State of output OUT 7 & R & OFF＝Output off ON＝Active Output \\
\hline \[
\begin{aligned}
& 89 \\
& \text { Bit }
\end{aligned}
\] & State of output OUT 8 & R & OFF＝Output off ON＝Active Output \\
\hline \[
\begin{aligned}
& 90 \\
& \text { Bit }
\end{aligned}
\] & State of output OUT 9 & R & OFF＝Output off ON＝Active Output \\
\hline \[
\begin{aligned}
& 91 \\
& \text { Bit }
\end{aligned}
\] & State of output OUT 10 & R & OFF＝Output off ON＝Active Output \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 664 & R & State of outputs & Bit & \\
\hline & & & 0 & OUT 1 \\
\hline & & & 1 & OUT 2 \\
\hline & & & 2 & OUT 3 \\
\hline & & & 3 & OUT 4 \\
\hline & & & 4 & OUT 5 \\
\hline & & & 5 & OUT 6 \\
\hline & & & 6 & OUT 7 \\
\hline & & & 7 & OUT 8 \\
\hline & & & 8 & OUT 9 \\
\hline & & & 9 & OUT 10 \\
\hline
\end{tabular}

\section*{Functional Diagram}

\section*{Settings}

\section*{Setting the Setpoint}

The active (control) setpoint (SPA) can be set by means of the local setpoint (_SP) or the remote setpoint (SP. rS). A remote setpoint can assume the value of an auxiliary input or one set via serial line (SP.r).

The remote setpoint can be defined in absolute value or relative to the local setpoint; in the latter case, the control setpoint will be given by the algebraic sum of the set local and the remote setpoint.

\section*{Enable Alarm}

Remote Setpoint
\begin{tabular}{|c|c|c|c|c|c|}
\hline 181 & LP. ᄅ & R/W & Auxiliary analog input function & See: AUXILIARY ANALOG INPUT (LIN/TC) & 0 \\
\hline
\end{tabular}

The remote setpoint can be set by means of the auxiliary analog input by enabling the function with parameter tP. 2
\begin{tabular}{|c|c|c|c|}
\hline 18 \\
\(136-249\) & SP . r & R/W & \begin{tabular}{c}
Remote setpoint \\
(SET gradient for manual power \\
correction)
\end{tabular} \\
\hline
\end{tabular}

\begin{tabular}{|l|l|l|}
\hline & Type of Remote Set & Absolute/Relative \\
\hline 0 & Digital (from serial line) & Absolute \\
\hline 1 & Digital (from serial line) & \begin{tabular}{l}
Relative to local set \\
(_SP o SP1 o SP2)
\end{tabular} \\
\hline 2 & Auxiliary input & Absolute
\end{tabular} \begin{tabular}{|l|l|}
Relative to set \\
(_SP o SP1 o SP2)
\end{tabular}

Shared Settings

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& 10 \\
& \text { bit }
\end{aligned}
\] & LOCAL/REMOTE & R/W & Instrument State (STATUS_W) & \multicolumn{2}{|r|}{Table of Instrument Settings} & 0 \\
\hline & & & & Bit & & \\
\hline & & & & 0 & - & \\
\hline 305 & & R/W & Instrument State & 1 & Select SP1/SP2 & \\
\hline 305 & & R/W & Instrument State & 2 & Start/Stop Selftuning & \\
\hline & & & & 3 & Select ON/OFF & \\
\hline & & & & 4 & Select AUTO/MAN & \\
\hline & & & & 5 & Start/Stop Autotuning & \\
\hline & & & & 6 & Select LOC/REM & \\
\hline
\end{tabular}

Read Active Setpoint
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{gathered}
1 \\
137-481
\end{gathered}
\] & 5ph & R & Active Setpoint \\
\hline 4 & & R & Deviation (SPA-PV) \\
\hline
\end{tabular}

\section*{Setpoint Control}

\section*{Set Gradient}

The "Set Gradient" function sets a gradual variation of the setpoint, with programmed speed, between two defined values. If this function is active (G.SP other than 0), at switch-on and at auto/man switching the initial setpoint is assumed equal to the PV, and the local or selected set is reached with set gradient. Every variation of set, including variations of the local setpoint, is subject to the gradient. The value of remote setpoint SP.rS is not saved in eeprom.
The set gradient is inhibited at switch-on when selftuning is enabled.

\section*{Multiset}

The MULTISET function determines the local setpoint by selecting the value from Setpoint (SP.1) or from Setpoint 2 (SP.2) based on the state of a digital input or by setting from a serial line.
The variation between Setpoint 1 and Setpoint 2 can take place with gradient: parameter G.SP determines the speed for reaching Setpoint 1 and parameter G.S2 defines the speed for reaching Setpoint 2.
The MULTISET function is enabled with parameter hd. 1 and automatically enables the gradient function. Selection between Setpoint 1 and Setpoint 2 can be seen by means of LED.

\section*{Functional Diagram}

\section*{Controls}

The C4 Family of controls are PID controllers. PID is proportional band, integral, and derivative math functions that when properly set will provide a highly accurate and stable control for the process. The C4 controllers can be set for heating or cooling or both heat \& cool. See below for further information on heating \& cooling used to-gether.
It is usually recommended to use on of the three builtin Autotuning or Selftuning functions for determining
the initial PID parameters. There are two types of Autotuning, Continuous \& One-Shot. These tuning functions need to be enabled within the C4 controller.
The PID values can be read and manually adjusted should fine tuning or specific us-er preferences for the process are needed. In this document is a method of manual-ly tuning if the user is unable to find satisfactory control via the autotuning or selftuning functions.

Output with superimposed band
Control output with only proportional action in case of proportional heating band superimposed on cooling band.

\(\mathrm{PV}=\) process variable
SP + cSP = cooling setpoint
c_Pb = cooling proportional band

\section*{Heat/Cool Control with Relative Gain}

This control mode (enabled with parameter Ctr = 14) asks you to specify cooling type. The PID cooling parameters are then calculated based on heating parameters in the ratio specified (ex: C.ME = 1 (oil), H_Pb = 10, H_dt =1, H_It = 4 implies:

C_Pb \(=12.5, \mathrm{C} _\)dt \(=1, \mathrm{C}\) It \(=4\))

Apply the following values when setting cycle times:
Air T Cool cycle \(=10 \mathrm{sec}\).
Oil T Cool cycle \(=4 \mathrm{sec}\).
Water T Cool cycle \(=2 \mathrm{sec}\).
NB.: Cool parameters cannot be changed in this mode.

PID Parameters
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 617 & EPi! & R/W & Selection of process variable of zone / Zone reference power & & Table of Selections & \begin{tabular}{l}
1 \\
Zone 1
\end{tabular} & \[
\begin{gathered}
2 \\
\text { Zone } 2
\end{gathered}
\] & \[
\begin{gathered}
3 \\
\text { Zone } 3
\end{gathered}
\] & \[
\begin{gathered}
4 \\
\text { Zone } 4
\end{gathered}
\] \\
\hline \multicolumn{4}{|l|}{\multirow[b]{8}{*}{\begin{tabular}{l}
(*): \\
- The reference power of a slave zone in automatic mode is the power of a master zone in automatic or manual mode. \\
- The reference power of a slave zone in manual mode is the zone manual power. \\
- Software shutdown remains independent for each zone.
\end{tabular}}} & 1 & PV zone 1 & \multicolumn{4}{|l|}{\multirow[t]{8}{*}{}} \\
\hline & & & & 2 & PV zone 2 & & & & \\
\hline & & & & 3 & PV zone 3 & & & & \\
\hline & & & & 4 & PV zone 4 & & & & \\
\hline & & & & 9 & POWER zone 1 (*) & & & & \\
\hline & & & & 10 & POWER zone 2 (*) & & & & \\
\hline & & & & 11 & POWER zone 3 (*) & & & & \\
\hline & & & & 12 & POWER zone 4 (*) & & & & \\
\hline
\end{tabular}
180 FLr R/W \(\quad\) Control Type

Table of Heat/Cool Controls
6
\begin{tabular}{|l|l|}
\hline & \multicolumn{1}{c|}{ Table of Heat/Cool Controls } \\
\hline 0 & P heat \\
\hline 1 & P cool \\
\hline 2 & P heat / cool \\
\hline 3 & Pl heat \\
\hline 4 & Pl cool \\
\hline 5 & PI heat / cool \\
\hline 6 & PID heat \\
\hline 7 & PID cool \\
\hline 8 & PID heat / cool \\
\hline 9 & ON-OFF heat \\
\hline 10 & ON-OFF cool \\
\hline 11 & ON-OFF heat / cool \\
\hline 12 & PID heat + ON-OFF cool \\
\hline 13 & ON-OFF heat + PID cool \\
\hline 14 & \begin{tabular}{l}
PID heat + cool with relative gain \\
(see parameter C.MEd) \\
\hline
\end{tabular} \\
\hline
\end{tabular}

Select sample time for derivative action.
+0 sample 1 sec.
+16 sample 4 sec .
+32 sample 8 sec .
+64 sample 240 msec .
+128 No Reset of integral component at setpoint change
Note: the LBA alarm is not enabled in the ON/OFF control.

WARNING: the Control ("Ctr") default parameter changed from "6" to "134" starting from products with serial number "SN 1013A1965" (March 2010).
The option "+128", used to disable the "Integral power reset" has been introduced as an improvement, starting from the Software version "1.43".
We strongly suggest to verify the eventual recipes created with Software versions before the 1.43, because, if the parameter "Ctry is included in the recipe, it could be configured in an undesirable way.

\(\square\) R/W
Proportional band for heating or hysteresis ON/OFF
```

0.0 ...999.9\% f.s.

```
7
150
\(\square\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline 8
151 & h．dt & R／W & Deriviative Heating Time & 0.0 ．．．99．99 min & 1.00 \\
\hline 6 & ［．Pb & R／W & Proportional band for cooling or hysteresis ON／OFF & 0.0 ．．．999．9\％f．s． & 1.0 \\
\hline 76 & ［．优 & R／W & Integral Cooling Time & 0．00 ．．．99．99 min & 4.00 \\
\hline 77 & ㄷ．日 & R／W & Deriviative Cooling Time & 0.00 ．．．99．99 min & 1.00 \\
\hline
\end{tabular}

Note：Parameters c．PB，c．It and c．dt are read－only if heat／cool control is enabled with relative gain（Ctr＝14）．
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline L．rE & R／W & Select Cooling Fluid & \(0 . \ldots .2\) & & Relative Gain（rG） & 0 \\
\hline
\end{tabular}
\begin{tabular}{c|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
152 \\
9
\end{tabular} & LE．i & R／W & OUT 1 （Heat）cycle time & \begin{tabular}{c}
\(1 \ldots 200 \mathrm{sec}\) \\
\((0.1 \ldots 20 \mathrm{sec})\)
\end{tabular} & \begin{tabular}{c}
Set 0 for GTT function 2 \\
See POWER CONTROL
\end{tabular} & 2 \\
\hline 159 & LE．ב & R／W & OUT 2（Heat）cycle time & \begin{tabular}{c}
\(1 \ldots 200 \mathrm{sec}\) \\
\((0.1 \ldots 20 \mathrm{sec})\)
\end{tabular} & & 20 \\
\hline
\end{tabular}

\section*{Read State}

The following registers are accessible via serial line：
\begin{tabular}{c|c|c|c|c|}
\hline 2 \\
\(132-471\) & R＿P & \(R\) & \begin{tabular}{c}
Value of control outputs \\
（＋Heat／－Cool）
\end{tabular} & （W－only in manual mode at address 252） \\
\hline
\end{tabular}

\section*{Advanced Settings}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& 39 \\
& 484
\end{aligned}
\] & ■5P & R／W & Cooling setpoint relative to heating setpoint & \(\pm 25.0 \%\) f．s． & & 0.0 \\
\hline 78 & 「5t & R／W & Manual reset （value added to PID input） & \begin{tabular}{l}
\[
\text { -999... } 999
\] \\
scale points
\end{tabular} & & 0 \\
\hline 516 & Pr5 & R／W & Reset power（value added directly to PID output） & －100．00．．．．100．0 \％ & & 0.0 \\
\hline 79 & Rr5 & R／W & Antireset （limits integral action of PID） & \[
\begin{aligned}
& 0 \ldots 9999 \text { scale } \\
& \text { points }
\end{aligned}
\] & & 0 \\
\hline 80 & FFd & R／W & Feedforward（value added to PID output after processing） & －100．00．．．100．0 \％ & & 0.0 \\
\hline 42
146 & hPh & R／W & Maximum limit heating power & 0.0 ．．． 100.0 \％ & & 100.0 \\
\hline 254 & HPL & R／W & Min．limit heating power（not avail－ able for double heat／cool action） & 0.0 ．．．100．0 \％ & & 0 \\
\hline 43 & ■PH & R／W & Maximum Limit Cooling Power & 0.0 ．．．100．0 \％ & & 100.0 \\
\hline 255 & EPL & R／W & Min．limit cooling power（not avail－ able for double heat／cool action） & 0.0 ．．． 100.0 \％ & & 0.0 \\
\hline 765 & PPEr & R／W & Percentage of output power & 0.0 ．．． 100.0 \％ & & 100.0 \\
\hline
\end{tabular}

\section*{Functional Diagram}

\section*{Automatic / Manual Control}

By means of the digital input function you can set the controller in MAN (manual) and set the control output to a constant value changeable by means of communication.
When returning to AUTO (automatic), if the variable is within the proportional band, switching is bumpless.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
2 \\
132-471
\end{gathered}
\] & -ь. P & R & Value of control outputs (+Heat / -Cool) & (W -only in manual mode at address 252) & 0 \\
\hline 140 & d & R/W & Digital Input Function & See: Table of digital input functions & 0 \\
\hline 618 & -以2 & R/W & Digital Input Function 2 & & \\
\hline 1 bit & AUTO/ MAN & R/W & \[
\begin{gathered}
\text { OFF = Automatic } \\
\text { ON = Manual }
\end{gathered}
\] & & \\
\hline 305 & & R/W & Instrument State & See: Table of instrument settings & 0 \\
\hline
\end{tabular}

\section*{Hold Function}

The process variable value and the setpoints remain "frozen" for the time the digital input is active.
By activating the digital input with the Hold function when the variable is at values below the setpoint, a setpoint memory reset de-energizes all energized relays and resets all memory latches.

\section*{Manual Power Correction}

With this function (available on models with CV diagnostics option), you can run a correction of power delivered in manual based on the reference line voltage (riF). The \% value of the (Cor) is freely settable and acts in inverse proportion.
The function is activated/deactivated by means of parameter SP.r.
Example: with the following settings: Cor \(=10 \%\); riF \(=380\); SP.r = value +8 ; instrument in manual; line voltage 380 VAC, manual power set at \(50 \%\), following a \(10 \%\) increase in line voltage, \(380 \mathrm{~V}+10 \%(380 \mathrm{~V})=418 \mathrm{~V}\), there is a decrease in set manual power equal to the same \% of change: \(50 \%-10 \%(50 \%)=45 \%\).
To use this function, the controller must have a CT (current transformer) and a VT (voltage transformer). N.B.: the \% change in manual power is limited to the value set in parameter "Cor".
The maximum manual power correction is limited to \(\pm 65 \%\).

Compensation of the voltage transformer read to maintain output power at a constant level.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 506 & E®r & R/W & Correction of manual power based on line voltage & \multicolumn{2}{|r|}{0.0 ... 100.0 \%} & \\
\hline \[
\begin{gathered}
18 \\
136-249
\end{gathered}
\] & 5Pr & R/W & Remote setpoint (SET gradient for manual power correction) & \multicolumn{3}{|c|}{Setpoit Table} \\
\hline \multicolumn{2}{|l|}{} & & & & Type of Remote Set & Absolute/Deviation \\
\hline & & & & 0 & Digital (from serial line) & Absolute \\
\hline & & & & 1 & Digital (from serial line) & Deviation local set (_SP o SP1 o SP2) \\
\hline & & & & 2 & Auxiliary input & Absolute \\
\hline & & & & 3 & Auxiliary input & Deviation set (_SP o SP1 o SP2) \\
\hline & & & & \multicolumn{3}{|l|}{\begin{tabular}{l}
+4 set gradient in digit/sec. \\
+8 correction of manual power based on line voltage \\
+16 disable saving of local setpoint _SP \\
+32 disable saving of local manual power (at switch-off returns to last value saved)
\end{tabular}} \\
\hline
\end{tabular}

\section*{Manual Tuning}
A) Enter the setpoint at its working value.
B) Set the proportional band at \(0.1 \%\) (with on-off type setting).
C) Switch to automatic and observe the behavior of the variable. It will be similar to that in the figure.
D) The PID parameters are calculated as follows: Proportional band

(V max -V min) is the scale range.

Integral time \(\mathrm{It}=1.5 \times \mathrm{T}\)
Derivative time \(\mathrm{dt}=\mathrm{It} / 4\)
E) Switch the controller to manual, set the calculated parameters (activate the PID control by setting a cycle time for relay outputs, if any), switch to automatic.
F) To assess parameter optimization, change the setpoint value if possible and check temporary behavior. If oscillation persists, increase the value of the proportional band; if response is too slow, decrease the value.

\author{
See: CONTROL - PID Parameters
}

\section*{Autotuning}

Enabling the autotuning function blocks the settings of the PID parameters．

Autotuning continues to measure the system oscilla－ tions，seeking as quickly as possible the PID parameter values that reduce the oscillation；it does not intervene if the oscillations drop to values below \(1.0 \%\) of the pro－ portional band．
It is interrupted if the setpoint is changed，and resumes automatically with a constant setpoint．The calculated parameters are not saved；if the instrument is switched off the controller resumes with the parameters pro－ grammed before autotuning was enabled．
Autotuning terminates the procedures with switching to manual．

Enabling the autotuning function blocks the settings of the PID parameters．
It can be two types：continuous or one shot．
Continuous autotunìng is enabled with parameter Stu （values 1，3，5）；it continues to measure the system os－ cillations，seeking as quickly as possible the PID pa－ rameter values that reduce the oscillation；it does not intervene if the oscillations drop to values below 1．0\％ of the proportional band．
It is interrupted if the setpoint is changed，and resumes automatically with a constant setpoint．
The calculated parameters are not saved if the instru－ ment is switched off，in case of switching to manual or disabling the code in configuration，and controller resumes with the parameters programmed before au－ totuning was enabled．

The calculated parameters are saved when the func－ tion is enabled via digital input or via A／M key（start／ stop）at stop．
One－shot autotuning can be activated manually or au－ tomatically with parameter Stu（as can be seen on the table，the values to be set depend on enabling of Self－ tuning or Softstart）．
It is useful for calculating PID parameters when the sys－ tem is in the vicinity of the setpoint；it produces a varia－ tion on the control output of a maximum of \(\pm 100 \%\) of the current control power limited by h．PH－h．PL（heat）， c．PH－c．PL（cool）and assesses the effects in over－ shoot over time．The calculated parameters are saved．
Manual activation（code Stu \(=8,10,12\) ）by setting the parameter directly or via digital input or key．
Automatic activation（code Stu \(=24,26,28\) with er－ ror range of \(0.5 \%\) ）when the PV－SP error exceeds the defined range（programmable at \(0.5 \%, 1 \%, 2 \%, 4 \%\) of full scale）．
Activation is inhibited if PV \(<5 \%\) or \(\mathrm{PV}>95 \%\) of input scale．

NB：at switch－on after selftuning，after switching to MANUAL，after software shutdown or after a setpoint change，automatic activation is inhibited for an interval equal to five times the integral time，with a minimum of 5 minutes．

An identical interval has to lapse after a one－shot run．

\author{
See：CONTROL－PID Parameters
}
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{4}{|c|}{\begin{tabular}{c}
Selftuning，autotuning，softstart table
\end{tabular}} & 0 \\
\hline S．tu & \begin{tabular}{l}
Autotuning \\
continuous
\end{tabular} & Selftuning & SoftStart \\
\hline 0 & NO & NO & NO \\
\hline 1 & YES & NO & NO \\
\hline 2 & NO & YES & NO \\
\hline 3 & YES & YES & NO \\
\hline 4 & NO & NO & YES \\
\hline 5 & YES & NO & YES \\
\hline 6 & - & - & - \\
\hline 7 & - & - & - \\
\hline \(8^{\star}\) & WAIT & NO & NO \\
\hline 9 & GO & NO & NO \\
\hline \(10^{*}\) & WAIT & YES & NO \\
\hline 11 & GO & YES & NO \\
\hline \(12^{*}\) & WAIT & NO & YES \\
\hline 13 & GO & NO & YES \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 140 & dis & \multicolumn{2}{|l|}{R/W} & Digital Input Function & See: Table of digital input functions & 0.0 \\
\hline 618 & - ¢ & \multicolumn{2}{|l|}{R/W} & Digital Input 2 Function & & 0.0 \\
\hline 29
bit & AUTOTUNING & \multicolumn{2}{|r|}{R/W} & \begin{tabular}{l}
OFF = Stop Autotuning \\
ON = Start Autotuning
\end{tabular} & & \\
\hline
\end{tabular}

\section*{Read State}

\section*{Selftuning}

This function is valid for single-action (either heat or cool) systems and for double-action (heat/cool) systems.
Selftuning is activated to calculate the best control parameters when starting the process. The variable (example:
temperature) must be the one assumed at zero power (room temperature).
The controller supplies the maximum power set until reaching an intermediate point between starting value and the setpoint, then resets power. The PID parameters are calculated by evaluating superelongation and the time needed to reach the peak (N.B.: This action is not considered in ON/OFF control).
When the function is completed, it disengages automatically, and the control proceeds to reach the setpoint.
How to activate selftuning:
A. Activation at switch-on
1. Set the setpoint to the desired value.
2. Enable selftuning by setting parameter Stu to 2
3. Switch off the instrument.
4. Make sure that temperature is near room temperature.
5. Switch on the instrument.
B. Activation via serial command
1. Make sure that temperature is near room temperature.
2. Set the setpoint to the desired value.
3. Run the Start Selftuning command.

The procedure runs automatically until termination. At termination, the new PID parameters are saved: proportional band, integral and derivative times calculated for the current action (heat or cool). In case of double action (heat + cool), the parameters for the opposite action are calculated by maintaining the initial ratio between the parameters (example: \(\mathrm{Cpb}=\mathrm{Hpb}\) * K; where \(\mathrm{K}=\mathrm{Cpb} / \mathrm{Hpb}\) when selftuning is started). At termination, the Stu code is automatically cancelled.
Note: The procedure does not start if temperature exceeds the setpoint for heat control, or is below the setpoint for cool control.
In this case, the Stu code is not cancelled. It is advisable to enable the LEDs to signal selftuning state. By setting parameter Ld.St \(=4\) on the Hrd menu, the appropriate LED will light up or flash when selftuning is active. Selftuning, autotuning, softstart table
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|c|}{\begin{tabular}{c}
Selftuning, autotuning, softstart table \\
\hline
\end{tabular}} \\
\hline & \begin{tabular}{l}
Autotuning \\
continuous
\end{tabular} & Selftuning & SoftStart \\
\hline 0 & NO & NO & NO \\
\hline 1 & YES & NO & NO \\
\hline 2 & NO & YES & NO \\
\hline 3 & YES & YES & NO \\
\hline 4 & NO & NO & YES \\
\hline 5 & YES & NO & YES \\
\hline 6 & - & - & - \\
\hline 7 & - & - & - \\
\hline \(8^{*}\) & WAIT & NO & NO \\
\hline 9 & GO & NO & NO \\
\hline \(10^{*}\) & WAIT & YES & NO \\
\hline 11 & GO & YES & NO \\
\hline \(12^{*}\) & WAIT & NO & YES \\
\hline 13 & GO & NO & YES \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 140 & － & R／W & Digital Input Function & See：Table of digital input functions & 0.0 \\
\hline 618 & dras & R／W & Digital Input 2 Function & & & 0.0 \\
\hline \begin{tabular}{c}
3 \\
bit
\end{tabular} & SELFTUNING & R／W & \begin{tabular}{l}
OFF＝Selftuning in Stop \\
ON＝Selftuning in Start
\end{tabular} & & & \\
\hline 305 & & R／W & Instrument state & Table of instrument settings & 0 \\
\hline
\end{tabular}

Read State

\section*{Soft Start}

If enabled，this function partializes power based on a percentage of time elapsed since instrument switch－on com－ pared to the set time of \(0.0 \ldots 500.0 \mathrm{~min}\)（＂SoFt＂parameter CFG phase）．Softstart is an alternative to selftuning and is activated after each instrument switch－on．Softstart is reset when switching to manual．
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 31 & こ上』 & R／W & Enable selftuning， autotuning，softstart & \multicolumn{4}{|c|}{Selftuning，autotuning，softstart table} & 0 \\
\hline & & & & & Autotuning continuous & Selftuning & SoftStart & \\
\hline & & & & 0 & NO & NO & NO & \\
\hline & & & & 1 & YES & NO & NO & \\
\hline & & & & 2 & NO & YES & NO & \\
\hline & & & & 3 & YES & YES & NO & \\
\hline & & & & 4 & NO & NO & YES & \\
\hline & & & & 5 & YES & NO & YES & \\
\hline & & & & 6 & － & － & － & \\
\hline & & & & 7 & － & － & － & \\
\hline & & & & 8＊ & WAIT & NO & NO & \\
\hline & & & & 9 & GO & NO & NO & \\
\hline & & & & 10＊ & WAIT & YES & NO & \\
\hline （＊）+16 & h autom & switch & O if PV－SP＞0．5\％f．s． & 11 & GO & YES & NO & \\
\hline \[
\begin{array}{r}
+32 u \\
+64 u
\end{array}
\] & automatic automatic & witching witching & \begin{tabular}{l}
if PV-SP > 1\% f.s. \\
if PV－SP＞2\％f．s．
\end{tabular} & 12＊ & WAIT & NO & YES & \\
\hline & automatic & switchin & & 13 & GO & NO & YES & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 263 & \(5 ¢ 5\) & R／W & Softstart setpoint & & 0 \\
\hline 264 & Sロア & R／W & Softstart power & \[
\begin{aligned}
& -100,00 \ldots . \\
& \text {....100,0 \% }
\end{aligned}
\] & 0.0 \\
\hline 147 & \(5 \square F\) & R／W & Softstart Time & 0.0 ．．．500．0 min & 0.0 \\
\hline
\end{tabular}

\section*{Read State}
\begin{tabular}{|c|c|c|c|}
\hline 63 & STATE & R & OFF \(=\) Softstart in Stop \\
bit & SOFTSTART & & ON Softstart in Start \\
\hline
\end{tabular}

\section*{Start Mode}

\section*{Software Shutdown}

Running the software shutdown procedure causes the following:
1) Reset of Autotuning, Selftuning and Softstart.
2) Digital input (if present) enabled only if assigned to SW shutdown function.
3) In case of switch-on after SW shutdown, any ramp for the set (set gradient) starts from the PV.
4) Outputs OFF: except for rL. 4 and rL. 6 which are forced ON.
5) Reset of HB alarm.
6) Reset of LBA alarm.
7) The Heat and Cool bit on the state word STATUS_ STUMENTO and POWER are reset.
8) At shutdown, the current power is saved. At switchon, integral power is recalculated as the difference between saved power and proportional power; this calculation is defined as "desaturation at switchon."
9) Alarms AL1 ...AL4 can be enabled or disabled by the oFF.t parameter.

Read State
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
68 \\
bit
\end{tabular} & \begin{tabular}{c}
DIGITAL INPUT \\
1
\end{tabular} & R & \begin{tabular}{c}
OFF = Digital input 1 off \\
ON = Digital input 1 on
\end{tabular} & See: Table of digital input functions & \\
\hline \begin{tabular}{c}
92 \\
bit
\end{tabular} & \begin{tabular}{c}
DIGITAL INPUT \\
2
\end{tabular} & R & \begin{tabular}{c}
OFF = Digital input 2 off \\
ON = Digital input 2 on
\end{tabular} & & \\
\hline R & R/W & Instrument state & See: Table of instrument settings & 0 \\
\hline
\end{tabular}

\section*{Specialized Control Functions}

These settings are available for fast acting systems that have a tendency for the main sensor to break but it is desirable that the controller continue to operate in manual mode. Settings for fast cycle times down to 0.1 second can be set. A suitable application would be Hot Runner control in plastics molding presses.
The main functions are:

\section*{Sensor Fault Action SBR; Power Setting}

In the case of a SBR, sensor break or fault, then the user can decide the controls action of the \% output.

Using the "HOT" (address 265) the user decides the control action. The choice is a pre-decided user \% output "FA.P" (address 228) or an Average \% power output. The Average \% Power output calculation is discussed in the next section titled POWER ALARM.
The alarm reset and reference power update take place only at switch-on or after a setpoint change.
The alarm is not activated if the control (CTR) is ON/ OFF type, during Selftuning and in Manual.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Hat & R/W & \begin{tabular}{c}
Select Specialized \\
Control Functions
\end{tabular} & & \multicolumn{3}{|c|}{ Table of specialized control functions } \\
\hline
\end{tabular}

FA.P - see alarm for probe in short or connection error (SBR-ERR)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline 228 & FR. P & R/W & \begin{tabular}{c}
Fault Action Power (supplied in \\
conditions of broken probe)
\end{tabular} & \(-100.0 . .100 .0 \%\) & 0.0 \\
\hline
\end{tabular}

Read State
\begin{tabular}{|c|c|c|c|}
\hline 26 \\
Bit
\end{tabular} \begin{tabular}{c}
HB ALARM STATE OR \\
POWER_FAULT
\end{tabular}\(\quad\) R \(\quad\)\begin{tabular}{c}
OFF = Alarm off \\
ON = Alarm on
\end{tabular}

\section*{Power Alarm}

The Power Alarm is used in the Specialized Control Function to monitor, then alarm, when the output power deviates outside an average calculated power band (Average Power +/- b.PF) for greater than the delay time "PF.t" (address 260). See diagram.

The Power Alarm is settings are based upon the average \% power output. This average \% power output is automatically calculat-ed by the C4. The calculation is made when the Process Variable has stabilized within Setpoint and user set band "b.St"(address 261) for 5 minutes. Note that the user must enable this alarm in "Hot" (address 265).

The alarm is not activated if the control (Ctr) is ON/OFF type, during Selftuning and in Manual.

The parameters for alarm power are:

\section*{Setting up the Power Alarm Function}

If using a relay output the assign an output (rL.2...6) for the power alarm.
Set the band (b.ST) within which the process variable is considered stable after 300 sec . have elapsed.
Set the band (b.PF) outside which the alarm is activated after time PF.t has elapsed.
Note: The reference for average power is the active power after 5 minutes (300 sec). have elapsed.
The alarm reset and reference power updates only take place only at switch-on or after a setpoint change.

The alarm is not activated if the control (Ctr) is ON/OFF type, during Selftuning and in Manual.
If the process variable leaves the stabilization band after the first stabilization, this does not influence the power alarm status.
In case of SBR, Sensor Break, 1) if the PV has not yet stabilized, either the average power over the last 5 minutes or FAP power is supplied (depending on the setting of the HOT parameter), or 2) if the PV has stabilized the average power over the last 5 minutes is supplied.

\section*{Softstart for Preheating}

This function allows the controller to pre-heat at specific setpoint or via a power \& time setting. Once finished the control re-sumes it normal PID control settings.
Softstart becomes active only at switch-on, with man-ual-automatic switching during Softstart (the time restarts from 0), and if the process variable is below setpoint SP.S.

\section*{Read State}
\begin{tabular}{|l|l|l|l}
\hline \begin{tabular}{c}
63 \\
bit
\end{tabular} & STATE OF SOFTSTART & R & \begin{tabular}{l}
OFF \(=\) Softstart in Stop \\
ON \(=\) Softstart in Start
\end{tabular} \\
\hline
\end{tabular}

\section*{Heating Output (Fast cycle)}

For outputs rL. 1 (Out 1) and rL. 2 (Out 2) you can set a fast cycle time (0.1 ... 20 sec) by setting the parameter to 64 (Heat) or 65 (Cool).
\begin{tabular}{|c|c|c|c|c|c|}
\hline 160 & ri 1 & R/W & Allocation of reference signal & See: Generic alarms -Table of reference signals & 0 \\
\hline 163 & -12 & R/W & Allocation of reference signal & & 1 \\
\hline
\end{tabular}

\section*{Power Control}

\section*{SSR Control Modes}

The following models are available:
C4 with full scale 16A in all four zones
C4 with full scale 30A in all four zones
C4 with full scale 40A in all four zones
C4X has four zones that will drive four logic outputs via VDC that will drive external SSR.

There are two power control modes. More graphical details located in the C4 Hardware Manual.

Zero Crossing Mode, ZC, settable cycle time (Ex: Ct. 1 \(=2 \mathrm{sec}\) if power Out.P = 50,0\% output on for 1 second and output off for 1 second)
Burst Fire Mode, GTT, variable cycle time with power delivery optimised in packets with minimum duration of 20ms (GTT function)
(Ex: Ct. \(1=0\) if power Out.P \(=50,0 \%\) output on for 20 ms and output off for 20ms).
In the first case, you can set the cycle time with two different resolutions, in seconds or in tenths of a second, based on the type of heating (heat) or cooling (cool) function assigned to outputs rL1 and rL2.
It is advisable to use short cycle times (<2-3 sec.) in case of control by means of solid state devices (SSR).

\section*{Heuristic Control Power}

Heuristic Control allows the user to control individual outputs timing to the limit the total peak power to the heating loads at any one time. This will help avoid overall peak current draws in the entire machine when used in single phase power line.
When starting a machine from cold, all loads tend to turn on together at 100\%. The power will stay at nearly \(100 \%\) until tempera-tures begin to approach the setpoint. Heuristic control will alternate the power

Condition for Heuristic Control is that the cycle time must be identical for all zones; the power percentage for each zone must be able to reach the desired setpoint for the machine for startup, load changes, and process upsets.

\section*{Example 1:}

4 loads 380V- 32A (zone 1), 16A (zone 2), 25A (zone 3), 40A (zone 4)
So maximum current is 113A, if all zones turn on together. \(\mathrm{I} 1+\mathrm{I} 2+\mathrm{I} 3+\mathrm{I} 4=113 \mathrm{~A}\)
Current limit I.HEU=50A. I.HEU is address 681.

The following combinations of conduction are possible: (to define the number of combinations, remember that the combinations without repetitions are \(=n!/\left(k!^{*}(n-\right.\) k)!)
\begin{tabular}{ll}
\(I 1+\mid 2=48 A\) & \(I 1+|2+| 3=73 A\) \\
\(I 1+\mid 3=57 A\) & \(I 1+|2+| 4=88 A\) \\
\(I 1+\mid 4=72 A\) & \(I 2+\mid 3+I 4=81 A\) \\
\(I 2+I 3=41 A\) & \(I 1+|3+| 4=97 A\) \\
\(I 2+\mid 4=56 A\) & \(I 1+|2+| 3+I 4=113 A\) \\
\(I 3+\mid 4=65 A\) &
\end{tabular}

The combination corresponding to current values below the limit value of I.HEU 50A is:
\(\mathrm{I} 1+\mathrm{I} 2=48 \mathrm{~A}\)
\(\mathrm{I} 2+\mathrm{I} 3=41 \mathrm{~A}\)
The one with lower current is given by zone 2 and zone 3. In the single cycle time for the enabled zones, the delivery of power may be reduced to respect the maximum current limit. The time distribution for activation of the zones is calculated at the start of each cycle:

Ptot \(=P 1+P 2\) (if P2>P3) + P3 (if P3>P2) + P4
Simultaneity is allowed for zones 2 and 3.
If P1= 100\%, P2= 100\%, P3= 100\%, P4= 100\%
Ptot \(=300 \%\); since Ptot \(>100 \%\), the conduction time of the zone \(x\) is obtained by Px * (100/Ptot)
The combination corresponding to current values below the limit value of I.HEU 50A is:
\(11+12=48 \mathrm{~A}\)
\(12+13=41 \mathrm{~A}\)
The one with lower current is given by zone 2 and zone 3. In the single cycle time for the enabled zones, the delivery of power may be reduced to respect the maximum current limit. The time distribution for activation of the zones is calculated at the start of each cycle:

Ptot \(=\) P1 + P2 (if P2>P3) + P3 (if P3>P2) + P4
Simultaneity is allowed for zones 2 and 3.
If P1= 100\%, P2=100\%, P3=100\%, P4= 100\%
Ptot=300\%; since Ptot \(>100 \%\), the conduction time of the zone \(x\) is obtained by Px * (100/Ptot)

\(P 1,2,3,4\) delivered \(=100 \% * 0.33=33 \%\)
If P1=100\%, P2=50\%, P3=0\%, P4= \(25 \%\)
Ptot \(=175 \%\); since Ptot \(>100 \%\), the conduction time of the zone \(x\) is obtained by Px * (100/Ptot)
\(P 1\) delivered \(=100 \% * 0.57=57 \%\)
P2 delivered \(=50 \%{ }^{*} 0.57=28.5 \%\)
P3 delivered \(=0 \% * 0.57=0 \%\)

\section*{Heterogeneous Power Control}

The purpose of this control is for the user to set an overall maximum current level to be used by the C4 or C4X. If the C4 senses an instantaneous exceeding the maximum current setting then the C4 will disconnect the zones based upon a preset priority.

This function resembles that of a thermal cutout that disconnects the load based on reading from the C4's four internal current transformers C4X four external current transformers. This function does not work with a single current transformer unit.

P4 delivered \(=25 \% * 0.57=14.2 \%\)

Example:
Zone 1 has priority: in case of overload, zone 4 is disconnected, followed by zone 3 , etc.
The maximum total controllable current in four zones is 160A in a C4-404 (40A model). The maximum current in a single zone is 40A.

Example: Maximum Current set to 125A. The control heating element loads are three 40A loads and one 10A load. If all zones turn on at the same time with a total of 130 A , then zone 4 is disconnected.

NOTE: Only for C4's with CT's.
In case of C4X, the 4 CT's must be connected to outputs OUT1...OUT4
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Table for enabling heterogeneous power} \\
\hline HD. 3 & Zone 1 & Zone 2 & Zone 3 & Zone 4 \\
\hline 0 & & & & \\
\hline 1 & X & & & \\
\hline 2 & & X & & \\
\hline 3 & X & X & & \\
\hline 4 & & & X & \\
\hline 5 & X & & X & \\
\hline 6 & & X & X & \\
\hline 7 & X & X & X & \\
\hline 8 & & & & X \\
\hline 9 & X & & & X \\
\hline 10 & & X & & X \\
\hline 11 & X & X & & X \\
\hline 12 & & & X & X \\
\hline 13 & X & & X & X \\
\hline 14 & & X & X & X \\
\hline 15 & X & X & X & X \\
\hline
\end{tabular}

Maximum current for heterogeneous power control
\begin{tabular}{l}
Heterogeneous power table \\
\hline \(0.0 \ldots 64.0\) for C4 30 kW \\
\(0.0 \ldots 128.0\) for C4 60 kW \\
\(0.0 \ldots 160.0\) for C4 80 kW \\
\hline
\end{tabular}

\section*{Virtual Instrument Control}

Virtual Instrument Control allows some setting of inputs, outputs, and LED status through the serial communications port. An example could be a different control system that is collecting temperature information then transmits con-tinuous temperature updates to the C4 to use instead of local thermocouple or RTD inputs.
Virtual instrument control is activated by means of parameter hd.1.
- By setting parameters S.In and S.Ou, this will enable the writing of some parameters via serial line, set the value ofinputs and the state of outputs.
- Enabling alarm setpoints AL1, ..., AL4 when write operations are continuous, and you don't have to keep the last value in eeprom.
- Enabling the PV input, excludes the local Tc or RTD acquisition and replace it with the value written in the register VALUE_F.
- Enabling digital input IN lets you set the state of this input, for example to run MAN/AUTO switching with the writing of bit 7 in the register V_IN_OUT.
- Ability to set the on/off state of outputs OUT1, ..., OUT10 and of the LEDs by writing bits in the register V_IN_OUT.

+16 For Heat/Cool control Ctr only: CT connected to cool output

\begin{tabular}{l|c|c|c|c|c|c|c|c}
\multicolumn{2}{c|}{\(0 \ldots 255\)} & & & 0 \\
Inputs & \(\operatorname{InTA}\) & \(\operatorname{In} .2\) & - & \(\operatorname{In} .1\) & AL4 & AL3 & AL2 & AL1 \\
\hline Bit & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0
\end{tabular}
\begin{tabular}{c|c|c|c|c|c|c|c|c|c|c}
\(0 \ldots 1023\) & \\
0.0 & \\
Outputs & Out10 & Out9 & Out8 & Out7 & Out6 & Out5 & Out4 & Out3 & Out2 & Out1 \\
\hline Bit & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0
\end{tabular}

\section*{628 \\ 511 \\ R/W \\ Control LEDs and digital inputs from serial}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{\(0 \ldots 1023\)} & & & & & & & & 0 \\
\hline & \multicolumn{2}{|l|}{Inputs} & \multicolumn{8}{|c|}{LED} \\
\hline & D2 & D1 & O4 & O3 & O2 & O1 & D2 & D1 & ER & RN \\
\hline Bit & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\
\hline
\end{tabular}

Table of virtual register addresses
\left.\begin{tabular}{|l|c|l|c|l|l|}
\hline \multirow{3}{*}{ Parameter } & Bit & Resource Enabled & \\
\hline S.In & 0 & Alarm setpoint AL1 \\
Register
\end{tabular}\(\right)\)
* the value to be set is in the range \(0 . . .1000\) if the corresponding rL. \(x\) is configured " 0 " or in the range \(0 . . .-1000\) if the corresponding rL.x is configured " 1 ".

\section*{Hardware and Software Information}

The following data registers can be used to identify the controller HW/SW and check its operation.

\section*{90}

\section*{Chd}

R
Hardware configuration codes
At value SV on the C4-OP display, the figures indicate the value of bits as follows:
- THOUSANDS and HUNDREDS (Power C4-IR) correspond to bits 7 to 9
- TENS (COOL outputs) correspond to bits 1 to 4

Table of main input errors
\begin{tabular}{|c|l|}
\hline 0 & No Error \\
\hline 1 & Lo (Process variable value < Lo.S) \\
\hline 2 & Hi (Process variable value > Hi.S) \\
\hline 3 & \begin{tabular}{l}
ERR (third wire interrupted for PT100 or input val- \\
ues below minimum limits (ex. for TC with connec- \\
tion error)
\end{tabular} \\
\hline 4 & \begin{tabular}{l}
SBR (Probe interrupted or input values beyond \\
maximum limits
\end{tabular} \\
\hline
\end{tabular}

Table of hardware configuration codes
\begin{tabular}{|c|l|c|}
\hline Bit & \multicolumn{1}{|c|}{ Correspondence } & \begin{tabular}{c}
Value Indicated \\
by C4-OP(*)
\end{tabular} \\
\hline 0 & \(=1\) OUTPUT COOL absent & 0 \\
\hline 1 & \(=1\) OUTPUT COOL relay & r \\
\hline 2 & \(=1\) OUTPUT COOL logic & d \\
\hline 3 & \begin{tabular}{l}
= 1 OUTPUT COOL continuous \\
\(0 . .20 \mathrm{~mA} / 0 \ldots 10 \mathrm{l}\)
\end{tabular} & t \\
\hline 4 & \(=1\) OUTPUT COOL triac 250Vac 1A & c \\
\hline 5 & - & \\
\hline 6 & \(=1\) C4 absent (C4XTERMO4 present) & te \\
\hline 7 & \(=1\) C4 30 kW & 30 \\
\hline 8 & \(=1\) C4 60 kW & 60 \\
\hline 9 & \(=1\) C4 80 kW & 80 \\
\hline 10 & \(=1\) C4 without TA & 0 \\
\hline 11 & \(=1\) C4 with 1 TA & 1 \\
\hline 12 & \(=1\) C4 with 4TA & 4 \\
\hline 13 & \(=1\) C4XTERMO4 without TA & 0 \\
\hline 14 & \(=1\) C4XTERMO4 with 4TA & 4 \\
\hline
\end{tabular}

In correspondence to the SV value on the C4-OP display, the digits indicate bit values as follows:
- TENS (auxiliary inputs) correspond to bits 0 to 1
- ONES (fieldbus interface) correspond to bits 6 to 15
\begin{tabular}{|c|l|c|}
\hline & \multicolumn{1}{|c|}{ Table of auxiliary input errors } \\
\hline Bit & \multicolumn{1}{|c|}{ Correspondence } & \begin{tabular}{c}
Value Indicated \\
by C4-OP(*)
\end{tabular} \\
\hline 0 & \(=1\) INPUT AUX absent & 0 \\
\hline 1 & \(=1\) INPUT AUX TC \(/ 60 \mathrm{mV}\) & 1 \\
\hline 2 & - & \\
\hline 3 & \(=1\) FIELDBUS ETH4 (Profinet) & \\
\hline 4 & \(=1\) FIELDBUS ETH5 & \\
\hline 5 & \(=1\) FIELDBUS ETH6 & \\
\hline 6 & \(=1\) FIELDBUS absent & \\
\hline 7 & \(=1\) FIELDBUS MODBUS & O \\
\hline 8 & \(=1\) FIELDBUS PROFIBUS & P \\
\hline 9 & \(=1\) FIELDBUS CANOPEN & C \\
\hline 10 & \(=1\) FIELDBUS DEVICENET & D \\
\hline 11 & \(=1\) FIELDBUS ETHERNET & E \\
\hline 12 & \(=1\) FIELDBUS EUROMAP66 & C \\
\hline 13 & \(=1\) FIELDBUS ETH3 & 3 \\
\hline 14 & \(=1\) FIELDBUS ETH2 (ETHERCAT) & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
& 693 \\
& 697
\end{aligned}
\] & UPdF & R & Fieldbus software version \\
\hline 695 & Codf & R & Fieldbus node \\
\hline 696 & LRAF & R & Fieldbus baudrate \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ Profibus } & \multicolumn{2}{c|}{ Canopen } & \multicolumn{2}{c|}{ DeviceNet } \\
\hline bAu.F & baudrate & bAu.F & baudrate & bAu.F & baudrate \\
\hline 0 & \(12.00 \mathrm{Mbit} / \mathrm{s}\) & 0 & \(1000 \mathrm{Kbit} / \mathrm{s}\) & 0 & \(125 \mathrm{Kbit} / \mathrm{s}\) \\
\hline 1 & \(6.00 \mathrm{Mbit} / \mathrm{s}\) & 1 & \(800 \mathrm{Kbit} / \mathrm{s}\) & 1 & \(250 \mathrm{Kbit} / \mathrm{s}\) \\
\hline 2 & \(3.00 \mathrm{Mbit} / \mathrm{s}\) & 2 & \(500 \mathrm{Kbit} / \mathrm{s}\) & 2 & \(500 \mathrm{Kbit} / \mathrm{s}\) \\
\hline 3 & \(1.50 \mathrm{Mbit} / \mathrm{s}\) & 3 & \(250 \mathrm{Kbit} / \mathrm{s}\) & & \\
\hline 4 & \(500.00 \mathrm{Kbit} / \mathrm{s}\) & 4 & \(125 \mathrm{Kbit} / \mathrm{s}\) & \multicolumn{2}{c|}{ Eithernet } \\
\hline 5 & \(187.50 \mathrm{Kbit} / \mathrm{s}\) & 5 & \(100 \mathrm{Kbit} / \mathrm{s}\) & \(\mathrm{bAu} . \mathrm{F}\) & baudrate \\
\hline 6 & \(93.75 \mathrm{Kbit} / \mathrm{s}\) & 6 & \(50 \mathrm{Kbit} / \mathrm{s}\) & 0 & \(100 \mathrm{Mbit} / \mathrm{s}\) \\
\hline 7 & \(45.45 \mathrm{Kbit} / \mathrm{s}\) & 7 & \(20 \mathrm{Kbit} / \mathrm{s}\) & 1 & \(10 \mathrm{Mbit} / \mathrm{s}\) \\
\hline 8 & \(19.20 \mathrm{Kbit} / \mathrm{s}\) & 8 & \(10 \mathrm{Kbit} / \mathrm{s}\) & & \\
\hline 9 & \(9.60 \mathrm{Kbit} / \mathrm{s}\) & & & & \\
\hline
\end{tabular}

\section*{EXCEPTIONS:}
- If diagnostics has been activated (parameters Hb.F and hd.2) and an alarm is active, the red ER error LED and the yellow OX output LED for the zone with the alarm will flash in sync.
\begin{tabular}{c|c|c|c|}
\hline 305 & & R/W & Current instrument state (STATUS_W) \\
\hline 698 & & R & \begin{tabular}{c}
Instrument state saved in eeprom \\
(STATUS_W_EEP)
\end{tabular} \\
\hline
\end{tabular}
- In case of an OVER_HEAT (STATUS_INSTRUMENT 4 bit1) alarm, the red ER error LED will flash.
\begin{tabular}{|c|l|}
\hline & Table of instrument settings \\
\hline & \\
\hline bit & \\
\hline 0 & - \\
\hline 1 & Select SP1/SP2 \\
\hline 2 & Start/Stop Selftuning \\
\hline 3 & Select ON/OFF \\
\hline 4 & Select AUTO/MAN \\
\hline 5 & Start/Stop Autotuning \\
\hline 6 & Select LOC/REM \\
\hline
\end{tabular}

\(\square\) R Instrument state 1
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\(0 \ldots 65535\)} & Table of Instrument state 1 & \\
\hline \multicolumn{4}{|l|}{bit} \\
\hline 0 & \multicolumn{3}{|l|}{AL. 1 or AL. 2 or AL. 3 or AL. 4 or ALHB.TA1 or ALHB. TA2 or ALHB. TA3 or Power Fault} \\
\hline 1 & \multicolumn{3}{|l|}{AL. Lo} \\
\hline 2 & \multicolumn{3}{|l|}{AL. Hi} \\
\hline 3 & \multicolumn{3}{|l|}{AL. Err} \\
\hline 4 & \multicolumn{3}{|l|}{AL. Sbr} \\
\hline 7 & \multicolumn{3}{|l|}{AL.LBA} \\
\hline 8 & \multicolumn{3}{|l|}{AL. 1} \\
\hline 9 & \multicolumn{3}{|l|}{AL. 2} \\
\hline 10 & \multicolumn{3}{|l|}{AL. 3} \\
\hline 11 & \multicolumn{3}{|l|}{AL. 4} \\
\hline 12 & \multicolumn{3}{|l|}{ALHB.TA1} \\
\hline 13 & \multicolumn{3}{|l|}{ALHB.TA2} \\
\hline 14 & \multicolumn{3}{|l|}{ALHB.TA3} \\
\hline 15 & \multicolumn{3}{|l|}{Selftuning on} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|}
\hline 0 & ... 65535 & Table of Instrument state 2 \\
\hline & \\
\hline bit & & \\
\hline 0 & AL.1 & \\
\hline 1 & AL.2 & \\
\hline 2 & AL.3 \\
\hline 3 & AL.4 \\
\hline 4 & AL.HB1 \\
\hline 5 & AL.HB2 \\
\hline 6 & AL.HB3 \\
\hline 7 & AL.Lo \\
\hline 8 & AL.Hi \\
\hline 9 & AL.Err \\
\hline 10 & AL.Sbr \\
\hline 11 & AL.LBA \\
\hline 12 & AL.Power \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 633 & R & Instrument state 3 & \multicolumn{2}{|l|}{0... 65535} & Table of Instrument state 3 & \\
\hline & & & bit & & & \\
\hline & & & 0 & AL.SCR & en 1 & \\
\hline & & & 1 & AL.SCR & en 2 & \\
\hline & & & 2 & AL.SCR & en 3 & \\
\hline & & & 3 & AL.SCR & ort 1 & \\
\hline & & & 4 & AL.SCR & ort 2 & \\
\hline & & & 5 & AL.SCR & ort 3 & \\
\hline & & & 6 & No volta & & \\
\hline & & & 7 & No volta & & \\
\hline & & & 8 & No Volt & & \\
\hline & & & 9 & No curr & & \\
\hline & & & 10 & No curr & & \\
\hline & & & 11 & No curr & & \\
\hline 634 & R & Instrument state 4 & 0 .. & 65535 & Table of Instrument state 4 & \\
\hline & & & bit & & & \\
\hline & & & 0 & Power_ & & \\
\hline & & & 1 & Over_h & & \\
\hline
\end{tabular}

\section*{Instrument Configuration Sheet}

\section*{Programmable Parameters}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{4}{|r|}{Definition of Parameter} & Note & Assigned Value \\
\hline \multicolumn{4}{|l|}{Installation of Modbus Serial Network} & & \\
\hline 46 & Fod & R & Instrument identification code & & \\
\hline 45 & － & R／W & Select Baudrate－Serial 1 & & \\
\hline 626 & ロ凩き & R／W & Select Baudrate－Serial 2 & & \\
\hline 47 & Pror & R／W & Select Parity－Serial 1 & & \\
\hline 627 & PRr ב & R／W & Select Parity－Serial 2 & & \\
\hline
\end{tabular}

\section*{Main Input}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 400 & 上4P & R／W & Probe，signal，enable，custom linearization and main input scale & & \\
\hline 403 & dP5 & R／W & Decimal point position for input scale & & \\
\hline 401 & Lo5 & R／W & Min．scale limit for main input & & \\
\hline 402 & H15 & R／W & Max．scale limit for main input & & \\
\hline 519
23 & ロF5 & R／W & Main input offset correction & & \\
\hline \[
\begin{gathered}
0 \\
470
\end{gathered}
\] & PV & R／W & Read of process variable（PV） engineering value & & \\
\hline 85 & Err & R & Self－diagnosis error code for main input & & \\
\hline 24 & FLL & R／W & low pass digital filter for input signal & & \\
\hline 179 & FLd & R／W & Digital filter on oscillations of input signal & & \\
\hline 86 & 5． 9 & R／W & Engineering value attributed to Point 0 （min．value of input scale） & & \\
\hline 87 & 5.71 & R／W & Engineering value attributed to Point 1 & & \\
\hline 118 & 5．ココ & R／W & Engineering value attributed to Point 32 （max．value of input scale） & & \\
\hline 293 & ら，ココ & R／W & Engineering value attributed to minimum value of the input scale & & \\
\hline 294 & 5.34 & R／W & Engineering value attributed to maximum value of the input scale． & & \\
\hline 295 & 5.35 & R／W & Engineering value of input signal corresponding to temp．of \(50^{\circ} \mathrm{C}\) ． & & \\
\hline
\end{tabular}

\section*{CT Auxiliary Input}

\section*{Voltage Value on Load（Voltmeter）}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 410 & Ht西 & R／W & Maximum scale limit of voltage transformer VT input（phase 1） & & \\
\hline 417 & HtU2 & R／W & Maximum scale limit of voltage transformer VT input（phase 2） & & \\
\hline 418 & H6U3 & R／W & Maximum scale limit of voltage transformer VT input（phase 3） & & \\
\hline 411 & 吅打 & R／W & Offset correction of TV input （phase 1） & & \\
\hline 419 & －tH2 & R／W & Offset correction of TV input （phase 2） & & \\
\hline 420 & －t！3 & R／W & Offset correction of TV input （phase 3） & & \\
\hline \[
\begin{aligned}
& 232 \\
& 485
\end{aligned}
\] & 尤： & R & Value of voltmeter input（phase 1） & & \\
\hline 492 & サせき & R & Value of voltmeter input（phase 2） & & \\
\hline 493 & 尤3 & R & Value of voltmeter input（phase 3） & & \\
\hline 412 & Ftヒ！ & R & Digital filter for TV auxiliary input （phase 1，2，3） & & \\
\hline
\end{tabular}

\section*{Auxiliary Analog Input（LIN／TC）}

Digital Inputs

\section*{Generic Alarms AL1, AL2, AL3 and AL4}

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c}
79 \\
bit
\end{tabular} & Reset Alarm Latch & R／W & \begin{tabular}{c}
OFF \(=-\) \\
ON＝Reset alarm latch
\end{tabular} \\
\hline \begin{tabular}{c}
4 \\
bit
\end{tabular} & State of Alarm 1 & R & \begin{tabular}{c}
OFF＝Alarm off \\
ON＝Alarm on
\end{tabular} \\
\hline \begin{tabular}{c}
5 \\
bit
\end{tabular} & State of Alarm 2 & R & \begin{tabular}{c}
OFF＝Alarm off \\
ON＝Alarm on
\end{tabular} \\
\hline \begin{tabular}{c}
62 \\
bit
\end{tabular} & State of Alarm 3 & R & \begin{tabular}{c}
OFF＝Alarm off \\
ON＝Alarm on
\end{tabular} \\
\hline \begin{tabular}{c}
69 \\
bit
\end{tabular} & State of Alarm 4 & R & \begin{tabular}{c}
OFF＝Alarm off \\
ON＝Alarm on
\end{tabular} \\
\hline 318 & R & \multicolumn{2}{|c|}{ State of alarm ALSTATE IRQ } \\
\hline
\end{tabular}

\section*{LBA Alarm（Loop Break Alarm）}

\section*{Heater Break Alarm}
\begin{tabular}{|c|c|c|c|c|}
\hline 195 & Hin & R／W & \multicolumn{2}{|l|}{Select number of enabled alarms} \\
\hline 57 & HEF & R／W & & larm function \\
\hline 56 & HEL & R／W & \multicolumn{2}{|l|}{Delay time for HB alarm activation} \\
\hline 55 & 明！ & R／W & \multicolumn{2}{|l|}{HB alarm setpoint（ammeter input scale points－Phase 1）} \\
\hline 502 & RHも己 & R／W & \multicolumn{2}{|l|}{HB alarm setpoint（ammeter input scale points－Phase 2）} \\
\hline 503 & 明口 & R／W & \multicolumn{2}{|l|}{HB alarm setpoint（ammeter input scale points－Phase 3）} \\
\hline \[
\begin{aligned}
& 26 \\
& \text { bit }
\end{aligned}
\] & \multicolumn{2}{|l|}{State of HB alarm or Power＿fault} & R & \[
\begin{aligned}
& \text { OFF = Alarm off } \\
& \text { ON = Alarm on }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 76 \\
& \text { bit }
\end{aligned}
\] & \multicolumn{2}{|l|}{State of HB Alarm phase 1} & m \(R\) & \\
\hline \[
\begin{aligned}
& 77 \\
& \text { bit }
\end{aligned}
\] & \multicolumn{2}{|l|}{State of HB Alarm phase 2} & m R & with 3－phase load \\
\hline \[
\begin{aligned}
& 78 \\
& \text { bit }
\end{aligned}
\] & \multicolumn{2}{|l|}{State of HB Alarm phase 3} & m R & with 3－phase load \\
\hline 504 & & R & \multicolumn{2}{|l|}{States of alarm HB ALSTATE＿HB （for 3－phase loads）} \\
\hline
\end{tabular}
\begin{tabular}{c|c|c|c}
512 & \(R\) & \begin{tabular}{c}
States of alarm ALSTATE \\
(for single-phase loads)
\end{tabular} \\
Alarm SBR - ERR (Probe in short or connection error)
\end{tabular}

Power Fault ALARMS (SSR_SHORT, NO_VOLTAGE and NO_CURRENT)

\begin{tabular}{|c|c|c|c|}
\hline 104 & State of alarm & R & \\
bit & NO_CURRENT phase 3 & R & \\
\hline
\end{tabular}

\section*{Alarm due to overload}
\begin{tabular}{|c|c|c|c|}
\hline 655 & \(R\) & INPTC \\
\hline 675 & & \(R\) & INPTC_DER \\
\hline
\end{tabular}

Outputs

\begin{tabular}{|c|c|c|c|c|c|}
\hline 614 & 口ぃー日 & R／W & Allocation of physical output OUT 8 & & \\
\hline 615 & 口ぃ上马 & R／W & Allocation of physical output OUT 9 & & \\
\hline 616 & 口ut 19］ & R／W & Allocation of physical output OUT 10 & & \\
\hline
\end{tabular}

\section*{Setpoint Settings}

\begin{tabular}{|l|l|l|}
\hline 4 & \(R\) & Deviation (SPA - PV) \\
\hline
\end{tabular}

\section*{Setpoint Control}
\(\left.\begin{array}{|c|c|c|c|c|c|}\hline 234 \\ 22\end{array}\right)\)

PID Heat/ Cool Control

\section*{Automatic/Manual Control}

\section*{Hold Funtion}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 140 & dif & R/W & Digital input function & & \\
\hline 618 & -153 & R/W & Digital input function 2 & & \\
\hline 64
bit & HOLD & R/W & \[
\begin{aligned}
& \text { OFF = hold off } \\
& \text { ON = hold on }
\end{aligned}
\] & & \\
\hline
\end{tabular}

\section*{Manual Power Correction}
\begin{tabular}{l|l|l|l|l|l|l|l|l}
505 & r IF & R/W & Line voltage & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 506 & LMr & R/W & \begin{tabular}{c}
Manual power correction based \\
on line voltage
\end{tabular} & & \\
\hline \begin{tabular}{c}
18 \\
\(136-249\)
\end{tabular} & SPr & R/W & \begin{tabular}{c}
Remote setpoint (SET Gradient \\
for power correction
\end{tabular} & & \\
\hline
\end{tabular}

\section*{Autotuning}

Selftuning

\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
92 \\
bit
\end{tabular} & \begin{tabular}{c}
DIGITAIL \\
INPUT STATE 2
\end{tabular} & R/W & \begin{tabular}{c}
OFF = Digital input 2 off \\
ON = Digital input 2 on
\end{tabular} & & \\
\hline 305 & & R/W & Instrument state & & \\
\hline 20 & & & \\
\hline
\end{tabular}

\section*{Softstart}

\section*{Software Shutdown}

Fault Action Power
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 265 & Hat & R/W & \begin{tabular}{c}
Select specialized control \\
functions
\end{tabular} & & & \\
\hline 228 & FRP & R/W & \begin{tabular}{c}
Fault action power (supplied in \\
conditions of broken probe)
\end{tabular} & & & \\
\hline 26 & \begin{tabular}{c}
STATE OF HB ALARM \\
OR POWER_FAULT
\end{tabular} & R/W & \begin{tabular}{c}
OFF = Alarm off \\
ON = Alarm on
\end{tabular} & & \\
\hline \begin{tabular}{c}
80
\end{tabular} & State of power alarm & R/W & \begin{tabular}{c}
OFF = Alarm off \\
ON = Alarm on
\end{tabular} & & & \\
\hline bit
\end{tabular}

\section*{Power Alarm}
\begin{tabular}{l|l|l|l|l|l|l|l}
261 & ロエ & R/W & \begin{tabular}{c}
Stability band \\
(power alarm function)
\end{tabular} & & \\
\hline
\end{tabular}

\section*{Preheating Softstart}

\section*{Heating Output (Fast Cycle)}

Heuristic Power Control

\section*{Heterogeneous Power Control}
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline 682 & hd'l & R/W & \begin{tabular}{c}
Enable heterogeneous \\
power control
\end{tabular} & & & \\
\hline 683 & HHEL & R/W & \begin{tabular}{c}
Maximum current for \\
heterogeneous power control
\end{tabular} & & & \\
\hline
\end{tabular}

Virtual Instrument Control

HW/SW Data

\begin{tabular}{|l|l|l|l|l|l|}
\hline 623 & Ldf & R/W & Function of LED O2 & & \\
\hline 624 & Ld & R/W & Function of LED O3 & & \\
\hline 625 & Ld. & R/W & Function of LED O4 & & \\
\hline 305 & & R/W & Instrument state & & \\
\hline 467 & & R & Instrument state & & \\
\hline 469 & & R & Instrument state 1 & & \\
\hline 632 & & R & Instrument state 2 & & \\
\hline 633 & & R & Instrument state 3 & & \\
\hline 634 & & R & Instrument state 4 & & \\
\hline
\end{tabular}

Limited Warranty:
Please refer to the Chromalox limited warranty applicable to this product at http://www.chromalox.com/customer-service/policies/termsofsale.aspx.

Chromalox, Inc.
1347 Heil Quaker Boulevard
Lavergne, TN 37086
(615) 793-3900
www.chromalox.com```

