Programming Manual

C4-IR
4-Channel SCR Power Controller with Independent PID Control
Suitable for IR Lamp, Transformer and Specialized Loads
Software Version 1.01

Table of Contents

Introduction 2
FIELD OF USE 2
Prohibited use 2
CHARACTERISTICS OF PERSONNEL 2
STRUCTURE OF THIS MANUAL 3
Instrument Architecture 4
SERIAL COMMUNICATION (MODBUS) 5
C4-compatible mode (dip-switch-7 =ON) 5
C4 mode (dip-switch-7=OFF) 5
CONNECTION 5
Installation of the "MODBUS" serial network 5
Inputs 7
MAIN INPUT 7
Probes and sensors 8
Scale limits 9
Setting the offset 9
Read state 9
Input filters 10
Linearization of input signal 10

- Signals from sensors 10
- Signals coming from custom thermocouples 11
CT AUXILIARY INPUT (Ammeter) 11
Scale limits 12
Setting the offset 12
Read state 13
Input filter 13
Input sampling interval 14
VOLTAGE VALUE ON THE LOAD (Voltmeter) 15
Scale limits 15
Setting the offset 16
Read state 16
Input filter. 16
AUXILIARY ANALOG INPUT (LIN/TC 19
Scale limits 20
Setting the offset 20
Read state 20
Input filter. 20
DIGITAL INPUTS 21
Read state 21
Functions related to digital inputs 21
USING A FUNCTION ASSOCIATED WITH DIGITAL 22
INPUT AND VIA SERIAL 22
USING A FUNCTION OF DIGITAL INPUT 1 TO ENABLE. 23
AT SOFTWARE ON 23
Alarms 24
GENERIC ALARMS AL1, AL2, AL3 and AL4 24
Reference variables 25
Alarm setpoints 25
Alarms hysteresis 25
Alarm type 26
Limits of absolute alarm settings 26
Enable alarms 27
Reset memory latch 27
Read state 27
LBA ALARM (Loop Break Alarm) 29
Enable alarm 29
Read state 29
HB ALARM (Heater Break Alarm) 30
Enable alarm 31
Alarm setpoints 31
Read state 32
ALARM SBR - ERR (probe in short or connection error) 34
Enable alarm 34
Read state 34
C4 with 4 TA 35
C4 with 1 TA 35
POWER FAULT ALARMS (SSR SHORT, NO_VOLTAGE, SSR_OPEN and NO_CURRENT) 35
C4TERMO4 with 4 TA 35
Read state 35
OVERHEAT ALARM 36
OUTPUTS
Allocation of reference signals 38
Read state 40
Allocation of physical outputs 40
Read state 41
SETTINGS
SETTING THE SETPOINT 43
Local setpoint 43
Remote setpoint 43
Shared settings 43
Read active setpoint. 43
SETPOINT CONTROL 44
Set gradient 44
Multiset 44
CONTROLS
PID HEAT/COOL CONTROL 46
Control actions 46
Proportional, derivative, and integral action 46
Heat/cool control with separate or superimposed band 47
Heat/cool control with relative gain 47
PID Parameters 47
Read state 48
AUTOMATIC / MANUAL CONTROL 50
HOLD FUNCTION 50
MANUAL POWER CORRECTION 51
MANUAL TUNING 52
AUTOTUNING 53
Read state 53
SELFTUNING Read state 54
SOFTSTART
Read state 56
START MODE 56
SOFTWARE SHUTDOWN 56
Read state 56
SPECIALIZED CONTROL FUNCTIONS 57
FAULT ACTION POWER 57
Read state 57
POWER ALARM 57
SOFTSTART FOR PREHEATING 59
Read state 59
HEATING OUTPUT (Fast cycle) 59
SSR CONTROL MODES 60
HEURISTIC Control power 64
HETEROGENEOUS power control 66
VIRTUAL INSTRUMENT CONTROL 67
HW/SW INFORMATION 69
INSTRUMENT CONFIGURATION SHEET. 74
PROGRAMMABLE PARAMETERS 74

ATTENTION!

This manual is an integral part of the product, and must always be available to operators.

This manual must always accompany the product, including if it is transferred to another user.
Installation and/or maintenance workers MUST read this manual and precisely follow all of the instructions in it and in its attachments. Chromalox will not be liable for damage to persons and/or property, or to the product itself, if the following terms and conditions are disregarded.

Important Safeguards

AWARNING

HIGH VOLTAGE (up to 480 VAC) is used in the operation of this equipment; DEATH ON CONTACT may result if personnel fail to observe safety precautions.
Learn the areas containing high-voltage connections when installing or operating this equipment.

AWARNING

Be careful not to contact high-voltage connections when installing or operating this equipment.
Before working inside the equipment, turn power off and ground all points of high potential before touching them.

ACAUTION

The owner/installer must provide all necessary safety and protection devices and follow all current electrical wiring standards and regulations. Failure to do so may compromise the integrity of the controller and/or cause product failure resulting in a safety risk to operational and service personnel.

The Customer is obligated to respect trade secrets. Therefore, this manual and its attachments may not be tampered with, changed, reproduced, or transferred to third parties without Chromalox's authorization.

ACAUTION

This controller utilizes a heat sink which is designed to cool the unit during operation. Under no circumstance should air flow around the controller be compromised in any way. Failure to do so may result in the overheating of the controller, product failure, product temperatures and even fire.

AWARNING

During continuous operation, the heat sink can reach very high temperatures, and keeps a high temperature even after the unit is turned off due to its high thermal inertia.
Higher voltages may be present. DO NOT work on the power section without first cutting out electrical power to the panel. Failure to do so may cause serious injury or death.

AWARNING

ELECTRIC SHOCK HAZARD: Any installation involving control equipment must be performed by a qualified person and must be effectiveIy grounded in accordance with the National Electrical Code to eliminate shock hazard.

Introduction

The C4 Family of PID \& power controllers are the C4, C4-IR, and C4X. This Programming Manual offers great application flexibility thanks to the extended configurability and programmability of its parameters.

(i)
This manual covers the C4-IR products. For the C4 and C4X please consult that Programming Manual.

Configuration and programming is accomplished by connecting the C4-IR to a PC which is equipped with the Chromalox C-PWR configuration software program. Connection between the PC and the controller MUST be done with a specific USB to TTL (or USB to RS485 adaptor cable supplied by Chromalox). Since it is impossible to foresee all of the installations and environments with which the instrument may be applied, adequate technical preparation and complete knowledge of the instrument's potentials are necessary.

(i)
Chromalox declines all liability if instructions for proper installation, configuration, and/or programming are disregarded, as well as all liability for systems upstream and/or downstream of the instrument.

Field of Use

The C4 Family is an ideal solution for many applications including multizone Ovens, Heat Treatment Furnaces, Thermoformers, Packaging Machinery, Food Processing Equipment, Semiconductor Equipment, Plastics Processing Equipmentt, and specialty loads such as IR Emitters, Silicon Carbide elements or transformers.

\triangle
Chromalox declines all liability for damage of any type deriving from installations, configurations, or programmings that are inappropriate, imprudent, or not conforming to the technical data supplied.

The C4 Family is highly programmable and flexible. The C4 Family can also be used for other applications provided they are compatible with the instrument's technical data. Application and use of the C4 Family of products must always conform to the limits specified in the technical data supplied.

Prohibited Use

It is absolutely prohibited:

- to utilize the instrument or parts of it (including software) for any use not conforming to that specified in the technical documentation supplied;
- to modify working parameters inaccessible to the operator, decrypt or transfer all or part of the software;
- to utilize the instrument in explosive atmospheres;
- to repair or convert the instrument using non-original replacement parts;
- to utilize the instrument or parts of it without having read and correctly understood the technical documentation supplied;
- to scrap or dispose of the instrument in normal dumps; components that are potentially harmful to the environment must be disposed of in conformity to the regulations of the country of installation.

Characteristics of Personnel

This manual is intended for technical personnel, who commission the instrument by connecting it to other units, and for service and maintenance personnel. It is assumed that such persons have adequate technical knowledge, especially in the fields of electronics and automation.
The instrument described in this manual may be operated only by personnel who are trained for their assigned task, in conformity to the instructions for such task and, specifically, to the safety warnings and precautions contained in such instructions.
Thanks to their training and experience, qualified personnel can recognize the risks inherent to the use of these products/systems and are able to avoid possible dangers.

Structure of this Manual

The instructions in this manual do not replace the safety instructions and the technical data for installation, configuration and programming applied directly to the product or the rules of common sense and safety regulations in effect in the country of installation.
For easier understanding of the controller's basic functions and its full potentials, the configuration and programming parameters are grouped according to function and are described in separate chapters.
Each chapter has from 1 to 3 sections:

- the first section presents a general description of the parameters described in detail in the following zones;
- the second section presents the parameters needed for the controller's basic applications, which users and/or installers can access clearly and easily, immediately finding the parameters necessary for quick use of the controller;
- the third section (ADVANCED SETTINGS) presents parameters for advanced use of the controller: This section is addressed to users and/or installers who want to use the controller in special applications or in applications requiring the high performance offered by the instrument.
Some sections may contain a functional diagram showing interaction among the parameters described;
- terms used on other pages of the manual (related or supplemental topics) are shown in underlined italics and listed in the index (linked to IT support).
In each section, the programming parameters are shown as follows:

Main Modbus address and additional addresses (if any).
Any second / third Modbus addresses are alternatives to the main address.

These parameters are represented in 1 bit format.

Communications

The modular power controller's flexibility permits replacement of previous-version instruments without changing the control software in use.

Based on the chosen work mode (see MODBUS SERIAL COMMUNICATION), you can use the instrument in 2 different modes:

- C4 Compatible mode
- C4 mode

New shared parameters, identified with Modbus addresses higher than 600, are accessible for both modes and permit more advanced functions such as:

In addition to having a CUSTOM group of parameters for dynamic addressing, C4 mode lets you use a single communication network node in-stead of 4 nodes as in Compatible mode.
NOTE! When programming, keep in mind that the addresses (parameters) described in this manual exist 4 times, specified by address node (ID).

C4 Compatible Mode Diagram

Serial Communication (Modbus)

There are two Modbus addressing modes for variables and configuration parameters:

- C4 compatible mode
- C4

The modes are selected with dip-switch-7.

C4 Compatible Mode (Dip-Switch—ON)

This lets you use supervision programs created for C4 modules.
Memory is organized into 4 groups:

- Zone 1
- Zone 2
- Zone 3
- Zone 4

In each zone, the variables and parameters have the same address as a C 4 instrument; the value (Cod) set on the rotary switches corre-sponds to that of Zone 1; the values in the other zones are sequential. Shared word parameters for the C4 instrument have addresses starting at 600 . Shared bit parameters have addresses high than 80.

Examples:

If the rotary switches have value 14 , node 14 addresses Zone 1, node 15 Zone 2, node 16 Zone 3, node 17 Zone 4. The process variable (PV) for Zone 1 has address Cod 0 . The PV for Zone 2 has address Cod+1, 0 , etc... Parameter out.5, which defines the function of output OUT 5 on the C 4 , has address Cod 611 .

C4 Mode (Dip-Switch—OFF)

This lets you optimize the efficiency of serial communication by integrating 4 zones in the C4. Memory is organized into 5 groups: 4 already in C4-compatible mode, plus one group defined as custom:

- Custom (additional memory map for dynamic addresses)
- Zone 1
- Zone 2
- Zone 3
- Zone 4

The custom group contains variables and parameters for a maximum of 120 words. The meaning of these words can be changed.
There is a single value (Cod) set on the rotary switches; i.e., one for each C4-IR instrument. To access the data in each zone, simply add an offset to the address (+1024 for Zone 1, +2048 for Zone 2, +4096 for Zone $3,+8192$ for Zone 4). Words in the custom group have address-es $0, \ldots, 119$. The variables and parameters are defined by default. At addresses $200, \ldots, 319$ we have words containing the value of the ad-dress of the corresponding variables or parameters. These addresses can be changed by the user, offering the ability to read/ write data with multi-word messages structured according to various supervision requirements.

NOTE: Protection of Maps 1-2.
You have to write the value 99 on addresses 600 and 601 to enable change of the custom group (addresses 200... 319). This value is reset at each switch-on.

Examples:

You can access the PV variable in Zone 1 with address Cod, $0+1024$ or address Cod, 0 custom variable 1 (address Cod, 200 has value 1024); you can access the PV variable in Zone 2 with address Cod, 0+2048 or address Cod, 29 custom variable 30 (address Cod, 229 has value 2048); if you want to read the 4 process variables in sequence at the first 4 addresses, set Cod, 200 = 1024, Cod. 201 = 2048, Cod,202 = 4096, Cod,203 = 8192.

Connection

Each C4-IR has an optically isolated serial port RS485 (PORT 1) with standard Modbus protocol via connectors S1 and S2 (type RJ10). Connector S3 is suitable for direct connection to a slave module or to a C4-OP operator terminal. Remember that the maximum communication speed of these devices is 19200 baud. You can insert a serial interface (PORT 2). There are various models based on the field bus required: Modbus, Profibus DP, CANopen, DeviceNet and Ethernet.
This communication port (PORT 2) has the same Cod address as PORT 1. The parameters for PORT 2 are bAu. 2 (select baud-rate) and Par. 2 (select parity).
The Cod parameter (read only) shows the value of the node address, settable from 00 to 99 with the 2 rotary switches; the hexadecimal settings are reserved. A parameter can be read or written from both communication ports (PORT 1 and PORT 2).

AWARNING

Changing the bAu (select baud-rate) and/or PAr (select parity) parameters may cause communication failure.
To set the bAu and PAr parameters, you have to run the Autobaud procedure described in the "Instruction and warnings" manual.
Run the Autonode procedure for the Slave node parameter. For the Master, simply switch off and then back on.

Installation of the "MODBUS" Serial Network

A network typically has a Master that "manages" communication by means of "commands" and Slaves that interpret these commands. C4's are considered Slaves to the network master, which is usually a supervision terminal or a PLC. They are positively identified by means of a node ad-dress (ID) set on the rotary switches (tens + ones). C4-IR's have a ModBus serial (Serial 1) and optional Fieldbus (Serial 2) serial (see order code) with one of the following protocols: ModBus, Profibus, CANopen, DeviceNet, Ethernet.

The following procedures are required for the Modbus protocol.
For the remaining protocols, see the specific Profibus, CANopen, DeviceNet and Ethernet manuals.
C4 modules have the following default settings:

- node address $=0(0+0)$
- speed Serial $1=19,200$ bit/s
- parity Serial 1 = none
- speed Serial $2=19,200$ bit/s
- parity Serial 2 = none

You can install a maximum of 99 C 4 -IR modules in a serial network, with node address selectable from "01" to "99" in standard mode, or create a mixed C4/C4-IR network in C4-IR compatible mode in which each C4 or C4-IR identifies 4 zones with sequential node address starting from the code set on the rota-ry switches.
In short, the valid rotary switch settings (tens + ones) are:

- $(0+0)=$ Autobaud Serial 1
- $(B+0)=$ Autobaud Serial 2
- $(A+0)=$ Autonode Serial 1 for slave modules connected to C4.

Inputs

Main Inputs

The modular power controller has 4 main inputs to control 4 temperature zones, to which you can connect temperature sensors (thermocouples and RTD), linear sensors or custom sensors to acquire process variable (PV) values. To configure, you always have to define the type of probe or sensor (tYP), the maximum and minimum scale limit (Hi.S - Lo.S) for the process variable value, and the position of the decimal point (dP.S).
If the sensor is a thermocouple or resistance thermometer, the minimum and maximum limits can be defined on the specific scale of the sensor. These limits define the width of the proportional control band and the range of values settable for the setpoint and alarm setpoints.

There is a parameter to correct the offset of the input signal (oF.S): the set value is algebraically added to the read of the process variable.
You can read the state of the main input (Err) in which an input error is reported: when the process variable goes beyond the upper or lower scale limit, it assumes the value of the limit and the corresponding state reports the error condition:
Lo $=$ process variable $<$ minimum scale limit
$\mathrm{Hi}=$ process variable $>$ maximum scale limit
Err $=$ Pt100 in short circuit and input value below minimum limit,

4...20mA transmitter interrupted or not powered

Sbr = Tc probe interrupted or input value above maximum limit
If noise on the main input causes instability of the acquired value, you can reduce its effect by setting a low pass digital filter (FIt). The default setting of 0.1 sec is usually sufficient. You can also use a digital filter (Fld) to increase the apparent stability of the process variable PV; the filter introduces a hysteresis on its value: if the input variation remains within the set value, the PV value is considered unchanged.

Maximum error of non linearity for thermocouples (Tc), resistance thermometer (PT100)

Tc Type:		
J, K		error < 0.2\% f.s.
S, R	range $0 . . .1750^{\circ} \mathrm{C}$:	error $<0.2 \%$ f.s. ($\mathrm{t}>300^{\circ} \mathrm{C}$)
	For other ranges:	error < 0.5\% f.s.
T	error < 0.2% f.s. ($\mathrm{t}>-150^{\circ} \mathrm{C}$)	
And inserting a custom linearization		
E,N,L		error $<0.2 \%$ f.s.
B	range $44 . . .1800^{\circ} \mathrm{C}$;	error < 0.5% f.s. ($\mathrm{t}>300^{\circ} \mathrm{C}$)
	range 44.0...999.9;	error f.s. ($\mathrm{t} 3300^{\circ} \mathrm{C}$)
U	range -200...400;	error $<0.2 \%$ f.s. (for $\mathrm{t}>-100^{\circ} \mathrm{C}$)
	For other ranges;	error $<0.5 \%$ f.s.
G	error < 0.2% f.s. ($\mathrm{l}>300^{\circ} \mathrm{C}$)	
D	error < 0.2\% f.s. (t > $200^{\circ} \mathrm{C}$)	
C	range 0...2300;	error $<0.2 \%$ f.s.
	For other ranges;	error $<0.5 \%$ f.s.
JPT100 and PT100		error < 0.2\% f.s.

The error is calculated as deviation from theoretical value with \% reference to the full-scale value expressed in degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$.

Table of probes and sensors

TC SENSOR				
Type	Type of probe	Scale	Without Decimal Point	With Decimal Point
0	TC J	${ }^{\circ} \mathrm{C}$	0/1000	0.0/999.9
1	TC J	${ }^{\circ} \mathrm{F}$	32/1832	32.0/999.9
2	TC K	${ }^{\circ} \mathrm{C}$	0/1300	0.0/999.9
3	TC K	${ }^{\circ} \mathrm{F}$	32/2372	32.0/999.9
4	TC R	${ }^{\circ} \mathrm{C}$	0/1750	0.0/999.9
5	TC R	${ }^{\circ} \mathrm{F}$	32/3182	32.0/999.9
6	TC S	${ }^{\circ} \mathrm{C}$	0/1750	0.0/999.9
7	TC S	${ }^{\circ} \mathrm{F}$	32/3182	32.0/999.9
8	TC T	${ }^{\circ} \mathrm{C}$	-200/400	-199.9/400.0
9	TC T	${ }^{\circ} \mathrm{F}$	-328/752	-199.9/752.0
28	TC	custom	custom	custom
29	TC	custom	custom	custom
SENSOR: RTD 3-wires				
Type	Type of probe	Scale	Without Decimal Point	With Decimal Point
30	PT100	${ }^{\circ} \mathrm{C}$	-200/850	-199.9/850.0
31	PT100	${ }^{\circ} \mathrm{F}$	-328/1562	-199.9/999.9
32	JPT100	${ }^{\circ} \mathrm{C}$	-200/600	-199.9/600.0
33	JPT100	${ }^{\circ} \mathrm{F}$	-328/1112	-199.9/999.9
SENSOR: RTD 3-wires				
Type	Type of probe	Scale	Without Decimal Point	With Decimal Point
34	$0 . . .60 \mathrm{mV}$	Linear	-1999/9999	-199.9/999.9
35	0... 60 mV	Linear	Custom linearization	Custom linearization
36	$12 . .60 \mathrm{mV}$	Linear	-1999/9999	-199.9/999.9
37	$12 . .60 \mathrm{mV}$	Linear	Custom linearization	Custom linearization
SENSOR: 60 mV voltage				
Type	Type of probe	Scale	Without Decimal Point	With Decimal Point
38	0... 20 mA	Linear	-1999/9999	-199.9/999.9
39	$0 . . .20 \mathrm{~mA}$	Linear	Custom linearization	Custom linearization
40	4... 20 mA	Linear	-1999/9999	-199.9/999.9
41	4... 20 mA	Linear	Custom linearization	Custom linearization
SENSOR: 20mA current				
Type	Type of probe	Scale	Without Decimal Point	With Decimal Point
42	$0 . . .1 \mathrm{~V}$	Linear	-1999/9999	-199.9/999.9
43	$0 . . .1 \mathrm{~V}$	Linear	Linear Custom	Linear Custom
44	$200 \mathrm{mv} . .1 \mathrm{~V}$	Linear	-1999/9999	-199.9/999.9
45	$200 \mathrm{mv} . .1 \mathrm{~V}$	Linear	Custom linearization	Custom linearization
SENSOR: 1V voltage				
Type	Type of probe	Scale	Without Decimal Point	With Decimal Point
46	Cust. 20mA	-	-1999/9999	-199.9/999.9
47	Cust. 20 mA	-	Custom linearization	Custom linearization
48	Cust. 60mV	-	-1999/9999	-199.9/999.9
49	Cust. 60mV	-	Custom linearization	Custom linearization
50	PT100-JPT	-	custom	custom
99	Input off			

| 403 | RTM | Decimal Point for Input Scale |
| :---: | :---: | :---: | :---: |

Specifies the number of decimal figures used to represent the input signal value: for example, $875.4\left({ }^{\circ} \mathrm{C}\right)$ with dP.S $=1$

Decimal Point Table		0
dP_S	Format	
0	XXXX	
1	XXX.X	
2	XX.XX(*)	
3	X.XXX(*)	
(*) Not available for		
TC, RTD Probes		

Scale Limits

Setting the Offset

519 23	■F	R/W	Offset Correction for Main Input	$-999 \ldots 99$ scale points	0

Lets you set a value in scale points that is algebraically added to the value measured by the input sensor.

Read State

Advanced Settings

Input Filters

| 24 | FLL | R/W | Low pass Digital Filter
 on Input Signal |
| :---: | :---: | :---: | :---: | 0.0...20.0 sec

Sets a low pass digital filter on the main input, running the average value read in the specified time interval. If $=0$ exclude the average filter on the sampled values.

179	FLd	R/W	Digital filter on oscillations of input signal	$0 \ldots 9.9$ scale points	0.5

Introduces a hysteresis zone on the input signal value within which the signal is considered unchanged, thereby increasing its apparent stability.

Linearization of Input Signal

The modular power controller lets you set a custom linearization of the signal acquired by the main input for signals coming from sensors and for signals coming from customer thermocouples.
Linearization is performed with 33 values (S00...S32: 32 segments).
S33, S34, S35 are an additional 3 values to be inserted in case of linearization with custom CT.

Signals from Sensors

For signals coming from sensors, linearization is done by dibiding the input scale into 32 zones of equal dV amplitude, where:

$$
\mathrm{dV}=(\text { full-scale value-start of scale value)/32 }
$$

Point 0 (origin) corresponds to the engineering value attributed to the minimum value of the input signal. Subsequent points cor-respond to the engineering values attributed to input values equal to:

Input value (k) = Minimum input value $+\mathrm{k}^{*} \mathrm{dV}$
Where k is the order number of the linearization point.

Signals Coming from Custom Thermocouples

An alternate linearization is available only for sensors consisting of custom thermocouples，created by defining engineering values at three measurement scale points settable with the following parameters：

293	ら．ココ	R／W	Engineering value attributed to mini－mum value of the input scale	mV start of scale $(-19.99 . . .99 .99)$
294	5.34	R／W	Engineering value attributed to maxi－mum value of the input scale．	$\begin{gathered} \text { mV full scale } \\ (-19.99 \ldots . .99 .99) \end{gathered}$
295	5.35	R／W	Engineering value attributed to in－ put signal corresponding to $50^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{mV} \text { at } 50^{\circ} \mathrm{C} \\ (-1.999 \ldots . .9 .999) \end{gathered}$

Functional Diagram

NOTE：The decimal point does not change the contents of the PV，but only permits its correct interpretation． Ex．if dP．S＝ 1 and $\mathrm{PV}=3$－，the engineering value in C is 30.0 ．

Current Value In Load

The RMS current value is read in variable Ld．A of each zone．If zone 1 has a 3－phase load，variable Ld．At con－ tains the average value of the three RMS currents．The Ld．A of the first three zones contain the RMS current value on lines L1，L2，and L3，respectively．
Accuracy is better than 1% in start modes ZC，BF，and HSC．
Accuracy is better than 3\％in PA mode with conduc－ tion angle＞90＊，and better than 10\％for lower con－ duction angles．
The circulating current in the load is acquired with a 0.25 ms sampling time．The minimum current value re－ quired for reading is 2 A for the 30 KW model， 4 A for the 60KW the model，and 6A for the 80KW model．
In addition，there are the following parameters for a zone with single－phase load．

I．tA 1 instantaneous ammeter value
I．AF1 filtered ammeter value（see Ft．tA）
I1on current with active control
O．tA1 ammeter input offset correction
Ft．tA ammeter input digital filter

There are also the following parameters if zone 1 has a three－phase load：

I．tA1，I．tA2 and I．tA3 instantaneous ammeter value on line L1，L2，and L3
I．AF1，I．AF2，and I．AF3 filtered ammeter value（See Ft．tA）on line L1，L2，：3

Setting the Offset

220	口．上R！	R／W	Offset correction CT input （phase 1）	-99.9...99.9 Scale points		0.0
415	口．上アコ	R／W	Offset correction CT input （phase 2）	$\begin{aligned} & -99.9 . .99 .9 \\ & \text { Scale points } \end{aligned}$	With 3－Phase Load	0.0
414	ロ．ヒセコ	R／W	Offset correction CT input （phase 3）	-99.9...99.9 Scale points	With 3－Phase Load	0.0

Read State

Advanced Settings

Input Filter

| 219 | FL.LR | R/W | CT input digital filter
 (phases 1, 2 and 3) | $0.0 \ldots 20$ sec | 0.0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Sets a low pass filter on the CT auxiliary input, running the average of values read in the specified time interval. If $=0$, excludes the average filter on sampled values.

Functional Diagram

Monophase load

Three Phase load

Voltage Value on the Load (Voltmeter)

RMS voltage is read in variable Ld.V of each zone. If zone 1 has the 3-phase load, variable Ld.V.t in the first zone contains the av-erage RMS value of voltages of the three lines L1, L2, and L3. Voltage on the load is acquired with sampling on each cycle, 20 ms at 50 Hz (16.6 ms at 60 Hz). Accuracy is better than 1%.

NOTE: For load voltage below 90VAC, the voltage read on the load and possible related alarms have no value.

751

L. U

R

Voltage on Load

```
752 Ld. 㨁 R
```


Line Voltage Value

The line voltage interval for correct opera-tion is 90...530VAC.

There are the following parameters if zone 1 has a sin-gle-phase load:
I.tV1 instantaneous voltmeter value of line
I.VF1 filtered voltmeter value
O.tV1 voltmeter input offset correction

Ft.tV voltmeter input digital filter

There are the following parameters if zone 1 has a 3-phase load:
I.tV1, I.tV2 and I.tV3, the instantaneous voltmeter value on line L1, L2, and L3, respectively.
RMS voltage values refer to neutral or to the internally revuilt value if not available or not connected.
I.VF1, I.VF2 and I.VF3 filtered voltmeter value on line L1, L2, and L3
O.tV1, o.tV2 and o.tV3 voltmeter input offset correction on line L1, L2 and L3
In case of open delta connection, the linked RMS voltages are in registers I.V21 voltage between L2 and L1; I.V32 voltage between L3 and L2;I.V13 voltage between L1 and L3.
Each phase has a voltage presence check that shuts off the module in case of incorrect values.
3-phase loads have an imbalance diagnostics, with consequent shut-down of the load and signal via LEDs.
A "voltage status" parameter contains information on the status of line voltage, including mains frequency identified $50 / 60 \mathrm{HZ}$.
3-phase loads have diagnostics for correct phase connection, lack of a voltage, or imbalance of the three line voltages.

NOTE:

LED status refers to the corresponding parameter, with the following special cases:

- LED RN (green) + LED ER (red) both flashing rapidly: autobaud in progress
- LED ER (red) on: error in one of main inputs (Lo, Hi, Err, Sbr)
- LED ER (red) flashing: temperature alarm (OVER_HEAT or TEMPERATURE_SENSOR_BROKEN) or SHORT-CIRCUIT_CURRENT alarm (only in three-phase configuration)
- LED ER (red) + LED Ox (yellow) both flashing: HB alarm or POWER_FAIL in zone x
- All LEDs flashing rapidly: ROTATION123 alarm (only in three-phase configuration)
- All LEDs flashing rapidly except LED DI1: jumper configuration not provided for
- All LEDs flashing rapidly except LED DI2: 30\%_UNBALANCED_LINE_WARNING alarm (only in three-phase configuration)
- All LEDs flashing rapidly except LED O1: SHORT_CIRCUIT_CURRENT alarm (only in three-phase configuration)
- All LEDs flashing rapidly except LED O2: TRIPHASE_MISSING_LINE_ERROR alarm (only in three-phase configuration)

Setting the Offset

411	－析！	R／W	Offset correction TV input （phase 1）	－99．9 ．．．99．9 Scale points		0.0
419	－ᄂ！2	R／W	Offset correction TV input （phase 2）	-99.9...99.9 Scale points	With 3－Phase Load	0.0
420		R／W	Offset correction TV input （phase 3）	-99.9...99.9 Scale points	With 3－Phase Load	0.0

Read State

$\begin{array}{r} 232 \\ 485 \end{array}$	1．1建！	R	Value of voltmeter input （phase 1）
492	1．上込	R	Value of voltmeter input （phase 2）
493	1．ヒ！〕	R	Value of voltmeter input （phase 3）
322	1．IF 1	R	Value of voltmeter input （phase 1）
496	1．1F2	R	Value of voltmeter input （phase 2）
497	1．143	R	Value of voltmeter input （phase 3）
702		R	Voltage status 5
315	FrEG	R	Voltage frequency in tenths of Hz
710	＇．12	R	Linked voltage V21
711	1．辰 ！	R	Linked voltage V32
712	1．H！	R	Linked voltage V13

Advanced Settings

Input Filter

Functional Diagram

Single-phase load

3-phase load

Power on the Load

Power on the load in each zone is read in variable Ld.P. Impedance in each zone is read in variable Ld.I.
If zone 1 has a 3 -phase load, variable Ld.P.t shows power and Ld.I.t shows total impedance.
Note that for loads such as IR lamps, impedance can vary greatly based on the power transferred to the load.

Functional Diagrams

Single-phase load

3-phase load

Auxiliary Analog Input (LIN/TC)

The C4-IR has 4 inputs defined as auxiliary (IN5 for zone 1, IN6 for zone 2, IN7 for zone 3, IN8 for zone 4) to which TC or linear temperature sensors can be connected. The presence of these inputs is optional and, for model C4-IR-XX4-XX is defined by the order code.

The input value, saved in variable In.2, can be read and used to activate the alarm signals assigned to it.
When an auxiliary input is present, you have to define the following parameters:

- sensor type (Al.2);
- its function (tP.2);
- decimal point position (dP.2);
- scale limits (HS. 2 - LS.2);
- offset correction value (oFS.2).

If the sensor is a thermocouple, the minimum and maximum limits can be defined in the specific scale of the sensor used. The range of values settable for alarm setpoints depends on these limits.
There is also a digital filter (Flt.2) that can be used to reduce noise on the input signal.

NOTE: Calibrate the UCA inputs by means of the C4-OP terminal. The procedure is described in the C4-OP manual.

Auxiliary Inputs Sensors Table				
Type	Type of Probe or Sensor	Without Dec. Point	With Dec. Point	0
0	TC J ${ }^{\circ} \mathrm{C}$	$0 / 1000$	$0.0 / 999.9$	
1	TC J $^{\circ} \mathrm{F}$	$32 / 1832$	$32.0 / 999.9$	
2	TC K $^{\circ} \mathrm{C}$	$0 / 1300$	$0.0 / 999.9$	
3	TC K $^{\circ} \mathrm{F}$	$32 / 2372$	$32.0 / 999.9$	
4	TC R $^{\circ} \mathrm{C}$	$0 / 1750$	$0.0 / 999.9$	
5	TC R $^{\circ} \mathrm{F}$	$32 / 3182$	$32.0 / 999.9$	
6	TC S $^{\circ} \mathrm{C}$	$0 / 1750$	$0.0 / 999.9$	
7	TC S $^{\circ} \mathrm{F}$	$32 / 3182$	$32.0 / 999.9$	
8	TC T $^{\circ} \mathrm{C}$	$-200 / 400$	$-199.9 / 400.0$	
9	TC T $^{\circ} \mathrm{F}$	$/ 328 / 752$	$-199.9 / 752.0$	
34	$0 \ldots 60 \mathrm{mV}$	$-1999 / 9999$	$-199.9 / 999.9$	
35	$0 \ldots 60 \mathrm{mV}$	Custom	Custom	
36	$12 \ldots 60 \mathrm{mV}$	$-1999 / 9999$	$-199.9 / 999.9$	
37	$12 \ldots 60 \mathrm{mV}$	Custom	Custom	
99	Input Off	Linearization	Linearization	

Table of Auxiliary Input Functions				
tP. 2	Aux. Input Function	Limits for Setting the LS. 2 \& HS. 2		0
		Min.	Mac	
0	None	-1999	9999	
1	Remote Setpoint	Absolute Lo.S, Deviation -999	Absolute Hi.S Deviation +999	(*)
2	Manual Analog Remote	-100.0\%	+100.0\%	(*)
3	Reset Analog Power	-100.0\%	+100.0\%	(**)

(*) See Settings: Control Setpoint (**) See Controls: PID Parameters

Specifies the number of decimal figures used to represent the input signal value：for example， 875.4 $\left({ }^{\circ} \mathrm{C}\right)$ with DP．S $=1$

Decimal Point Table		
dp．2	Format	
0	xxxx	
1	xxx．x	
2	xx．xx（＊）	
3	x．xxx（＊）	
（＊）Not available for TC probes		

Min．．．max input scale selected in Al．2 e tP．2	0
Min．．．max input scale selected in Al．2 e tP．2	1000

Setting the Offset

605	ロF．コ．	R／W	Offset for auxiliary input correction	$-999 \ldots 999$ Scale Points	0

Read State

602	In．ᄅ	R	Value of Auxiliary Input
606	Er．E R R	Error code for self－diagnosis of auxiliary input	

Error Code Table	Description	
0	No error	
1	LO	Value of process variable is $<$ Lo．S
2	HI	Value of process variable is $>$ Hi．S
3	ERR	Third wire interrupted for PT100 or input values below minimum limits （ex．：for TC with connection error）
4	SBR	Probe interrupted or input values beyond maximum health

Advanced Settings

Input Filter

Sets a low pass filter on the auxiliary input，running the average of values read in the specified time internal． If $=0$ ，excludes the average filter on sampled values

Digital Inputs

There are always two inputs. Each input can perform various functions based on the setting of the following parameters:

140	d15.	R/W	Digital Input Function	Digital Input Functions Table		0	Activation
				0	No functions (input off)		
				1	MAN/AUTO controller	0	On leading edge
618	dH.	R/W	Digital Input 2 Function	2	LOC / REM	0	On leading edge
				3	HOLD		On state
				4	AL1, ..., AL4 alarms memory reset		On state
				5	SP1 / SP2 selection		On leading edge
				6	Software on/off		On leading edge
				7	None		
				8	START / STOP Selftuning		On leading edge (**)
				9	START / STOP Autotuning		On leading edge (**)
				10	Power_Fault alarms memory reset		On state
				11	LBA alarm reset		On state
				12	AL1 .. AL4 and Power_Fault alarms reset memory		On state
				13	Enable at software ON (*)		
				14	Reference calibration of retroaction selected by Hd. 6		
				15	Calibration threshold alarm HB		
					for inverse logic input to force logic state 0 (OFF) to force logic state 1 (ON)		
					Ford it. only		

Read State

$\left.\begin{array}{l}\begin{array}{|c|c|c|c|c|}\hline 68 \\ \text { Bit }\end{array} \\ \begin{array}{c}\text { State of Digital } \\ \text { Input 1 }\end{array} \\ \hline \text { R }\end{array} \begin{array}{c}\text { OFF = Digital input 1 off } \\ \text { ON = Digital input 1 on }\end{array}\right]$

Functions Related to Digital Inputs

- MAN / AUTO controller. \qquad see AUTO/MAN CONTROL
- LOC / REM... see SETTING THE SETPOINT
- HOLD .. see HOLD FUNCTION
- Reset memory latch...................................... see GENERIC ALARMS AL1 .. AL4
- Select SP1 / SP2 see SETTINGS - Multiset
- Software OFF / ON
see SOFTWARE SHUTDOWN
- START / STOP Selftuning see SELFTUNING
- START / STOP Autotuning............................ see AUTOTUNING
- Calibration of feedback reference see FEEDBACK

Calibration of HB alarm setpoint see HB ALARM

Do not use the Digital Input function within this device as an E-Stop or in a power OFF safety circuit.

When item is activated by "leading edge" care should be taken that the parameter maybe changed via communications, regardless of the status of the digital input state.

Using a Function Associated with Digital Input and Via Serial

At power-on or on the leading edge of digital input 1 or 2 , all zones assume the state set by the digital input. For each zone, this state can be changed by writing via serial.
The setting via serial is saved in eeprom (STATUS_W_EEP, address 698).

State AB	Setting dIG. 1 or dIG. 2	Address for Writing via Serial	
		Access at 16 Bits	Access at 1Bit
AUTO/MAN controller	1 word 305	bit 4	bit 1
LOC/REM setpoint	2 word 305	bit 6	bit 10
SP1/SP2 setpoint	5 word 305	bit 1	bit 75
ON/OFF software	6 word 305	bit 3	bit 11
STOP/START selftuning	8 word 305	bit 2	bit 3
STOP/START autotuning *	9 word 305	bit 5	bit 29

* continuous or one-shot.

Using a Function of Digital Input 1 to Enable at Software On

Software ON can be configured either by enabling a digital input or by writing via serial. Enabling by digital input 1 1 (diG) is common to all zones, whereas enabling via serial is specific for each individual zone.

The ON/OFF setting via serial is saved in eeprom (STATUS_W_EEP, address 698 bit 3) for resetting of the condition at the next hardware power-on; use parameter P.On.t. to force software always ON or software always OFF at next power-on.

State AB	Setting	Address for Writing via Serial	
		Access at 16 Bits	Access at 1Bit
	13	Word 305 bit 3	Bit 11

Alarms

Generic Alarms AL1, AL2, AL3, and AL4

Generic Alarms AL1, AL2, AL3, and AL4
Four generic alarms are always available and can perform various functions. Typically, alarm AL. 1 is defined as minimum and AL. 2 as maximum.

These alarms are set as follows:

- select the reference variable to be used to monitor the value (parameters A1.r, A2.r, A3.r and A4.r): the origin of the variable can be chosen from the process variable PV (generally linked to the main input), the ammeter input, the voltmeter input, the auxiliary analog input, or the ac-tive setpoint.
- set the value of the alarm setpoint (parameters AL.1, AL.2, AL. 3 and AL.4).
This value is used for comparison with the reference variable value: it can be absolute or indicate a shift from the variable in case of deviation alarm.
- set the hysteresis value for the alarm (parameters Hy.1, $\mathrm{Hy.2}$, Hy. 3 and Hy .4): the hysteresis value defines a band for safe re-entry of the alarm condition: without this band, the alarm would be deactivated as soon as the reference variable re-entered the setpoint limits, with the possibility of generating another alarm signal in the presence of oscillations of the reference signal around the setpoint value.
- select alarm type:
- absolute/deviation: if the alarm refers to an abso-

For AL1 reverse absolute alarm (low) with positive Hyst1, AL1 t = 1 (*) $=$ OFF if disabled at switch on
For AL2 direct absolute alarm (high) with negative Hyst2, AL2 t = 0

Deviation alarm

For AL1 $=$ normal inverse deviation alarm with negative Hyst 1, AL1 $t=3$ For AL1 $=$ normal direct deviation alarm with negative Hyst 1, AL1 $t=2$
lute value or to another variable (for example, to the setpoint).

- direct/reverse: if the reference variable exceeds the alarm setpoint in the "same direction" as the control action or not. For example, the alarm is direct if the reference variable exceed the upper setpoint value during heating or assumes values below the lower setpoint during cooling. In the same manner, the alarm is reverse if the reference variable assumes values below the lower setpoint during heating or exceeds the setpoint during cooling.
- normal/symmetrical: if band value is subtracted or added, respectively, to/from the upper and lower limit of the alarm setpoints or indicates a higher and lower band compared to the alarm setpoint.
- with/without disabling at switch-on: if you want to check the reference variable value at system switchon or wait until the variable enters the control window.
- with/without memory: if the alarm signal persists even when the cause has been eliminated or stops when the variable returns to normal values.
- definition of upper and lower limits for setting absolute alarms: if the alarm is used to check that the operator does not set a setpoint value outside a certain band during multiset operation. The above concepts are better explained in the following figures:

For AL1 $=$ symmetrical direct absolute alarm with Hyst1, AL1 t = 4
Minimum hysteresis $=2$ scale points
Symmetrical deviation alarm

For AL1 $=$ Symmetrical inverse deviation alarm with Hyst 1, AL1 $t=7$ For AL1 $=$ Symmetrical direct deviation alarm with Hyst 1, AL1 $t=6$

Reference Variables

Table of Alarm Reference Setpoints			
Type	Variable to be Compared	Reference Setpoint	0
0	PV（process variable）	AL	0
1	in．tA1 AL（In．tA1 OR In．tA2 OR In．tA3 WITH 3－PHASE LOAD）	AL	0
2	In．tV1 AL（In．tV1 OR In．tV2 OR In．tV3 WITH 3－PHASE LOAD）	AL	0
3	SPA（active setpoint）	AL（absolute only）	0
4	PV（process variable）	AL［deviation only and referred to SP1（with multiset function）	
5	In．2 auxiliary input	AL	

N．B．for codes 1， 2 and 5，the reference to the alarm is in scale points and not to the decimal point（d．P）

Alarm Setpoints

Alarm Hysteresis

$\begin{aligned} & 27 \\ & 187 \end{aligned}$	H」．	R／W	Hysterisis for Alarm 1	999 Scale points	$0 . . .999$ sec． $\mathrm{Se}+32$ in A1．t 0．．． 999 min． $\mathrm{Se}+64$ in A1．t	－1
$\begin{aligned} & 30 \\ & 168 \end{aligned}$	H」．ᄅ	R／W	Hysterisis for Alarm 2	999 Scale points	$0 . . .999$ sec． $\mathrm{Se}+32$ in A1．t 0．．． 999 min．Se＋64 in A1．t	－1
$\begin{aligned} & 53 \\ & 189 \end{aligned}$	H」．コ	R／W	Hysterisis for Alarm 3	999 Scale points	$0 . . .999$ sec．Se＋32 in A1．t 0．．． 999 min．Se＋64 in A1．t	－1
59	H3． 4	R／W	Hysterisis for Alarm 4	999 Scale points	$\begin{aligned} & 0 . . .999 \mathrm{sec} . \mathrm{Se}+32 \text { in A1.t } \\ & 0 \ldots 999 \text { min. Se +64 in A1.t } \end{aligned}$	－1

Alarm Type

406	R！．	R／W	Alarm Type 1
407	Rコ．	R／W	Alarm Type 2
408 (54)	Rコ．上	R／W	Alarm Type 3
409	RU．上	R／W	Alarm Type 4

Table of Alarm behavior				
AL．x．t	Direct（High Limit） Inverse（Low Limit）	Absolute Relative to Active Setpoint	Normal Symmetrical （Window）	0
0	direct	absolute	normal	
1	inverse	absolute	normal	0
2	direct	relative	normal	0
3	inverse	relative	normal	0
4	direct	absolute	symmetrical	0
5	inverse	absolute	symmetrical	0
6	direct	relative	symmetrical	0
7	inverse	relative	symmetrical	

－ 8 to disable at switch－on until first setpoint＋ 16 to enable memory latch
－ 32 Hys becomes delay time for activation of alarm（ $0 . . .999 \mathrm{sec}$ ．） （excluding absolute symmetrical）
－ 64 Hys becomes delay time for activation of alarm（0．．． 999 min．） （excluding absolute symmetrical）
－ 136 to disable at switch－on or at change of setpoint until first setpoint
－ 256 only for alarms with memory and delay time：the delay time becomes a timed hysteresis（with time stopped in case of SBR condition：when SBR condition disappears the delay time starts counting from zero）

46 bit	AL1 Direct／Inverse	R／W
47 bit	AL1 Absolute／Relative	R／W
48 bit	AL1 Normal／Symmetrical	R／W
49 bit	AL1 Disabled at Switch－On	R／W
50 bit	AL1 with Memory	R／W
54 bit	AL2 Direct／Inverse	R／W
55 bit	AL2 Absolute／Relative	R／W
56 bit	AL2 Normal／Symmetrical	R／W
57 bit	AL2 Disabled at Switch－On	R／W
58 bit	AL2 with Memory	R／W
36 bit	AL3 Direct／Inverse	R／W
37 bit	AL3 Absolute／Relative	R／W
38 bit	AL3 Normal／Symmetrical	R／W
39 bit	AL3 Disabled at Switch－On	R／W
40 bit	AL3 with Memory	R／W
70 bit	AL4 Direct／Inverse	R／W
71 bit	AL4 Absolute／Relative	R／W
72 bit	AL4 Normal／Symmetrical	R／W
73 bit	AL4 Disabled at Switch－On	R／W
74 bit	AL4 with Memory	R／W

Enable Alarms

+16 to enable HB alarm +32 to enable LBA alarm

Table of Enabled Alarms					
AL.nr	Alarm 1	Alarm 2	Alarm 3	Alarm 4	3
0	disabled	disabled	disabled	disabled	
1	enabled	disabled	disabled	disabled	
2	disabled	enabled	disabled	disabled	
3	enabled	enabled	disabled	disabled	
4	disabled	disabled	enabled	disabled	
5	enabled	disabled	enabled	disabled	
6	disabled	enabled	enabled	disabled	
7	enabled	enabled	enabled	disabled	
8	disabled	disabled	disabled	enabled	
9	enabled	disabled	disabled	enabled	
10	disabled	enabled	disabled	enabled	
11	enabled	enabled	disabled	enabled	
12	disabled	disabled	enabled	enabled	
13	enabled	disabled	enabled	enabled	
14	disabled	enabled	enabled	enabled	
15	enabled	enabled	enabled	enabled	

Reset Memory Latch

| 140 | d |
| :--- | :---: | :---: | :---: | :---: |
| 618 | d |

Digital Input Functions Table		0
0	No function (input off)	
1	MAN /AUTO controller	0
2	LOC / REM	0
3	HOLD	
4	AL1, ..., AL4 latch alarm reset	
5	SP1 / SP2 selection	
6	Software on/off	
7	None	
8	START / STOP Selftuning	
9	START / STOP Autotuning	
10	Power_Fault latch alarm reset	
11	LBA alarm reset	
12	AL1 .. AL4 and Power_Fault latch alarm reset	
13	Enable at software ON (*)	
14	Reference calibration of retoraction selected by Hd. 6	
15	Calibration Threshold alarm HB	
	+ 16 for inverse logic input +32 to force logic state 0 (OFF) +48 to force logic state 1 (ON)	

Read State

$\begin{aligned} & 4 \\ & \text { bit } \end{aligned}$	State of Alarm 1	R	$\begin{aligned} & \text { OFF = Alarm off } \\ & \text { ON = Alarm on } \end{aligned}$
$\underset{\text { hit }}{5}$	State of Alarm 2	R	$\begin{aligned} & \text { OFF = Alarm off } \\ & \text { ON = Alarm on } \end{aligned}$
$\begin{aligned} & 62 \\ & \text { bit } \end{aligned}$	State of Alarm 3	R	$\begin{aligned} & \text { OFF = Alarm off } \\ & \text { ON = Alarm on } \end{aligned}$
$\begin{aligned} & 69 \\ & \text { bit } \end{aligned}$	State of Alarm 4	R	$\begin{aligned} & \text { OFF = Alarm off } \\ & \text { ON }=\text { Alarm on } \end{aligned}$
318			f Alarms ALSTATE

$0 \ldots 255$	States of Alarms Table
bit	
0	State AL.1
1	State AL.2
2	State AL.3
3	State AL.4
4	State AL.HB (if 3-phase or phase 1/2/3) or Power Fault
5	State AL.HB PHASE 1 (if 3-phase)
6	State AL.HB FASE 2 (if 3-phase)
7	State AL.HB FASE 3 (if 3-phase)

Functional Diagram

LBA Alarm (Loop Break Alarm)

LBA is an alarm type that monitors the overall control loop status of the Process Value, the status of the outputs, and compares them for monitoring the system.
LBA alarm will identify incorrect functioning of the control loop due to a possible short relay, open relay, heater element failure, shorted probe, or incorrectly positioned probe, or reversed probe.
It is best suited for startups of equipment from cold where situation when possible components have failed or may have been moved. LBA can be used in heating or cooling applications.

Do not use LBA as a replacement for safety or over temperature protection.
With the alarm enabled (parameter AL.n), the instrument checks that in condition of maximum power delivered for a settable time (Lb.t) greater than zero, the value of the process variable increases in heating or decreases in cooling: if this does not happen, the LBA alarm trips. In these conditions, power is limited to value (Lb.P).
The alarm condition resets if the temperature increases in heating or decreases in cooling.

Enable Alarm

195	H.		R/W	Select number of enabled alarms	See Table of Enabled Alarms		3
44	Ĺ.		R/W	Delay time for tripping LBA Alarm	$\begin{gathered} 0.0 \ldots 500.0 \\ \min \end{gathered}$	If Lb.t $=0$, the LBA alarm is disabled	30.0
119	L㽞.	R/W	Limitation of power delivered in presence of LBA alarm		-100.0 ..100		25.0
81 bit	Reset LBA Alarm		R/W	OFF = - ON = LBA Alarm Reset			

Read State

| 8 |
| :---: | :---: | :---: | :---: |
| bit | | State of LBA |
| :---: |
| Alarm |\quad R | OFF $=$ LBA Alarm Off |
| :---: |
| ON $=$ LBA Alarm On |

Functional Diagram

HB Alarm (Heater Break Alarm)

This type of alarm identifies load break or interruption by reading the current delivered by means of a current transformer.
HB Alarm is monitoring on three fault situations.

- Actual current level is lower than the alarm setting. This usually indicates that a partial failure or complete failure of the heating element.
- Actual current level is higher than rated or expected load. This may indicate partial short circuits of the heating element.
- Current is present at the heating element when the output to the heating element is off, indicating possibility of shorted relay contacts, or short power to the heating element.
In a standard configuration, output OUT1 is associated to heating control in zone 1, obtained by modulating electrical power with the ON/OFF control based on the set cycle time.
A current reading is performed during the ON phase identifies an anomalous shift from the rated value due to a load break (first two fault situations described above), while the current read performed during the OFF phase identifies a break in the control re-lay, with consequent output always active (third fault situation).

The alarm is enabled by means of parameter AL.n; select the type of function you want by means of parameter Hb.F:

Hb.F=0: alarm activates if the current load value is below the setpoint value set in A.Hbx while the associated control out-put is ON.

Hb.F=1: alarm activates if the current load value is above the setpoint value set in A.Hbx while the associated control out-put is OFF.

Hb.F=2: alarm activates by combining functions 0 and 1, considering the setpoint of function 1 as 12% of the ammeter full scale defined in H.tAx.

Function: Hb Alarm Setpoint Self-Learning

This function permits self-learning of the alarm setpoint.
To use this function, you first have to set parameter Hb.P, which defines the percentage of current compared to rated load below which the alarm trips.
The function can be activated via control from serial line or digital input (see parameter dIG or dIG.2)
When the Teach-in function is activated in modes ZC, BF and HSC, the RMS current value in conduction ON multiplied by parameter Hb.P determines the HB alarm setpoint.
When the Teach-in function is activated in mode PA, the existing RMS current value is shown at 100\% of power, which, multiplied by parameter Hb.P, determines the HB alarm setpoint.

Hb.F=3 or Hb.F=7 (continuous alarm): alarm activates due to a load current value below the setpoint value set in A.Hbx; this alarm does not refer to the cycle time and is disabled if the heating (cooling) output value is below 3\%.

Setting A.Hbx $=0$ disables both types of HB alarm by forcing deactivation of the alarm state.
Alarm resets automatically if its cause is eliminated.
An additional configuration parameter for each zone, related to the HB alarm is:
Hb.t = delay time for activation of HB alarm, understood as the sum of times which the alarm is considered active.
For example, with:

- Hb.F = 0 (alarm active with current below setpoint value),
- Hb.t $=60 \mathrm{sec} \&$ cycle time of control output $=10 \mathrm{sec}$,
- power delivered at 60%,
the alarm will activate after 100 sec (output ON for 6 sec each cycle);
if power is delivered at 100%, the alarm will activate after 60 sec.
If the alarm deactivates during this interval, the time sum is reset.

The delay time set in Hb.t must exceed the cycle time of the associated output.
If zone 1 has a 3-phase load, you can set three different setpoints for the HB alarm:
A. $\mathrm{Hb} 1=$ alarm setpoint for line L1
A.Hb2= alarm setpoint for line L2
A.Hb3= alarm setpoint for line L3

For loads such as IR lamps, with high temperature coefficient, the HB alarm is disabled when delivered power is below 20\% (ZC, BF, HSC modality) or 5\% (PA modality).

For IR lamps (see parameter Hd. 5 option +128), the function activates automatic reading of the power/current curve useful for determining the HB alarm setpoint.
Automatic reading of the power/current curve takes place with the following sequence:

- softstart at maximum power (default 100\%), 5 sec. delay
- reduction of power to $50 \%, 30 \%, 20 \%, 10 \%, 5 \%$, between each value 5 sec . delay
- return to normal operation.

The maximum value of conduction in this phase can be restricted through the PS.Hi. If required, must be enabled only with Hd. $6=0$ (only after calibration, you can set the desired value Hd. 6)

Enable Alarm

195	H＿．n	R／W	Select number of enabled alarms
57	HE．F	R／W	HB Alarm Functions

Default：
SINGLE－PHASE LOAD：each A．HbX refers to its respective phase． 2－PHASE LOAD：single reference setpoint A．Hb1 and OR between phases 1， 2 and phases 3， 4.
3－PHASE LOAD：single reference setpoint A．Hb1 and OR among phases 1， 2 and 3.
+8 HB reverse alarm
+16 relates to single setpoints and singled phases WITH
3－PHASE LOAD

See Table of Enabled Alarms		3
Val．	Table of HB Alarm Functions	0
0	Relay，logic output：alarm active at a load current value below set point for control output ON time．	
1	Relay，logic output：alarm active at a load current value above set point for control output OFF time．	
2	Alarm active if one of functions 0 and 1 is active （OR logic between functions 0 and 1 ）（＊）	
3	Continuous heating alarm	

56	H．t	R／W	Delay time for activation of HB Alarm
464		R／W	STATUS 11＿W

$0 \ldots 999 \mathrm{sec}$	The value must exceed the cycle time of the output to which the HB alarm is associated．	30
	Table settings STATUS 11＿W（＊）	0
Bit	（＊）To safeguard the other bit，	
5	Feedback calibration	writing should be done starting from the reading going to change only the bit interested．
6	HB Alarm calibration	

Alarm Setpoints

55	同他	R／W	HB alarm setpoint（scale points ammeter input－Phase 1）		10.0
502	R．H2E	R／W	HB alarm setpoint（scale points ammeter input－Phase 2）	With 3－phase load	10.0
503	R．M明	R／W	HB alarm setpoint（scale points ammeter input－Phase 3）	With 3－phase load	10.0

NB：In case of 3－phase load，you can set a different value for parameter A．Hb1，
A．Hb2，A．Hb3 for each zone（ex．：to control an unbalanced 3－phase load）．

Read State

512

318 R States of alarm ALSTATE IRQ

Table of HB Alarm States

Bit	
0	HB TA2 time ON
1	HB TA2 time OFF
2	HB alarm TA2
3	HB TA3 time ON
4	HB TA3 time OFF
5	HB alarm TA3

Table of alarm states ALSTATE

Bit	
4	HB alarm time ON
5	HB alarm time OFF
6	HB alarm

States of Alarm Table		
Bit		
0	State AL.1	
1	State AL.2	
2	State AL.3	
3	State AL.4	
4	State AL.HB (if 3-phase or phase 1/2/3) or Power Fault	
5	State AL.HB PHASE 1 (if 3-phase)	
6	State AL.HB PHASE 2 (if 3-phase)	
7	State AL.HB PHASE 3 (if 3-phase)	

Functional Diagram

NOTE:
the value of setpoint Hb.tr for the HB alarm is calculated in two different ways, depending on the selected function mode:
if $\mathrm{ZC}, \mathrm{BF}, \mathrm{HSC}$ mode: \qquad $\mathrm{Hb} . \operatorname{tr}=\mathrm{A} . \mathrm{Hb}$
if PA mode \qquad Hb.tr $=$ A.Hb $* \overline{\text { (Ou.P) }}$

HB Calibration in modes ZC - BF - HSC

HB Calibration in mode PA

- Calibration ON bit 112
- Function dIG / dIG. 2

Alarm SBR—ERR (Probe in short or connection error)

This alarm is always ON and cannot be deactivated. It controls correct functioning of the probe connected to the main input.
In case of broken probe:

- the state of alarms AL1, AL2, AL3, and AL4 is set based on the value of parameter rEL;

Enable Alarm

229 FEL \quad R/W | Fault action (definition of state |
| :---: | :---: | :---: |
| in case of broken probe) Sbr, Err |
| Only for main input |

- control power control is set to the value of parameter FAP.
Identification of the type of break detected on the main input is contained in Err.

Table of Probed Alarm Settings					
0					
	Alarm 1	Alarm 2	Alarm 3	Alarm 4	
0	OFF	OFF	OFF	OFF	
1	ON	OFF	OFF	OFF	
2	OFF	ON	OFF	OFF	
3	ON	ON	OFF	OFF	
4	OFF	OFF	ON	OFF	
5	ON	OFF	ON	OFF	
6	OFF	ON	ON	OFF	
7	ON	ON	ON	OFF	
8	OFF	OFF	OFF	ON	
9	ON	OFF	OFF	ON	
10	OFF	ON	OFF	ON	
11	ON	ON	OFF	ON	
12	OFF	OFF	ON	ON	
13	ON	OFF	ON	ON	
14	OFF	ON	ON	ON	
15	ON	ON	ON	ON	

| 228 | FR. P | R/W | Fault Action Power (supplied in
 conditions of broken probe) | $-100.0 . .100 .0 \%$ | see: SPECIALIZED CONTROL | 30.0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Read State

Power Fault Alarms (SSR Short, No_Voltage, SSR_Open and No_Current)
C4 With 4 Current Transformers

Read State

$\begin{aligned} & 96 \\ & \text { Bit } \end{aligned}$	State of alarm SSR_SHORT phase 1	R	$\begin{gathered} \text { OFF = Alarm disabled } \\ \text { ON = Alarm active } \end{gathered}$	
$\begin{aligned} & 97 \\ & \text { Bit } \end{aligned}$	State of alarm SSR_SHORT phase 2	R	$\begin{gathered} \text { OFF = Alarm disabled } \\ \text { ON }=\text { Alarm active } \end{gathered}$	With 3-phase load
$\begin{aligned} & 98 \\ & \text { Bit } \end{aligned}$	State of alarm SSR_SHORT phase 3	R	$\begin{gathered} \text { OFF = Alarm disabled } \\ \text { ON = Alarm active } \end{gathered}$	With 3-phase load
$\begin{aligned} & 99 \\ & \text { Bit } \end{aligned}$	State of alarm NO_VOLTAGE phase 1	R	$\begin{gathered} \text { OFF = Alarm disabled } \\ \text { ON = Alarm active } \end{gathered}$	
$\begin{gathered} 100 \\ \text { Bit } \end{gathered}$	State of alarm NO_VOLTAGE phase 2	R	$\begin{gathered} \text { OFF = Alarm disabled } \\ \text { ON = Alarm active } \end{gathered}$	With 3-phase load
$\begin{gathered} 101 \\ \text { Bit } \end{gathered}$	State of alarm NO_VOLTAGE phase 3	R	$\begin{gathered} \text { OFF = Alarm disabled } \\ \text { ON = Alarm active } \end{gathered}$	With 3-phase load
$\begin{gathered} 102 \\ \text { Bit } \end{gathered}$	State of alarm NO_CURRENT phase 1	R	$\begin{gathered} \text { OFF = Alarm disabled } \\ \text { ON = Alarm active } \end{gathered}$	
$\begin{gathered} 103 \\ \text { Bit } \end{gathered}$	State of alarm NO_CURRENT phase 2	R	$\begin{gathered} \text { OFF = Alarm disabled } \\ \text { ON = Alarm active } \end{gathered}$	With 3-phase load
$\begin{gathered} 104 \\ \text { Bit } \end{gathered}$	State of alarm NO_CURRENT phase 3	R	$\begin{gathered} \text { OFF = Alarm disabled } \\ \text { ON = Alarm active } \end{gathered}$	With 3-phase load

Overheat Alarm

The C4-IR has an internal heat sink that is temperature monitored and can disable the outputs when an overheat condition is met. The overheat alarm is not programmable but is a read only parameter within communications parameters. The Overheat Alarm is for the protection of the power control hardware in the C4-IR.

There are two type of methods that the overheat temperature is monitored. In each case the outputs 1, 2, 3, 4 will be disabled.

* Temperature exceeds $85^{\circ} \mathrm{C}$. The C4-IR will reset this alarm once the heat sink temperature falls below $75^{\circ} \mathrm{C}$.
* Temperature rise of 7C in 12 seconds.

!NOTE! The usual reason for an overheat condition is blocked air vents or by a blocked cooling fan.

Outputs

The modular power controller has high flexibility in the assignment of functions to the physical outputs. As a result, the instrument can be used in sophisticated applications.
A function is assigned to each physical output in two steps: first assign the function to one of internal reference signals rL. 1 .. rL. 6 , and then attribute the reference signal to parameters out. 1 .. out. 10 (corresponding to physical outputs OUT1 .. OUT10).
In standard configuration, physical outputs Out1, Out2, Out3, Out4 perform the heating control function (Heat) for zone 1, zone 2, zone 3 and zone 4, respectively; value 0 (function HEAT) is assigned to reference signals rL. 1 in each zone, and the following values to the output parameters: out.1=1 (output rL. 1 zone 1), out.2=2 (output rL. 1 zone 2), out.3=3 (output rL. 1 zone 3) and out.4=4 (output rL. 1 zone 4).
Physical outputs Out5, Out6, Out7, Out8 are optional, and the type (relay, logic, continuous or triac) is defined by the order code. In standard configuration, these outputs perform the cooling control function (Cool) for zone 1, zone 2, zone 3 and zone 4, respectively. In this configuration, value 1 (function COOL) is assigned to reference signals rL. 2 in each zone, and the following values to the output parameters: out.5=5 (output rL. 2 zone 1), out. $6=6$ (output rL. 2 zone 2), out. $7=7$ (output rL. 2 zone 3) and out. $8=8$ (output rL. 2 zone 4).
Relay outputs Out9 and Out10 are always present, pro-
grammable by means of parameters out. 9 and out.10, to which available alarm signal functions are assigned by means of the four reference signals rL.3, rL.4, rL.5, rL. 6 in each zone.
Standard configuration has the following assignments:

- reference signals: $\mathrm{rL} 3=$.2 (function AL1), rL.4=3 (function AL2), rL. $5=4$ (function AL3) and rL.6=5 (function AL.HB or POWER_FAULT with HB alarm).
- output parameters: out. $9=17$ and out. $10=18$.

In this way, the state of output physical Out9 is given by the logic OR of AL1, AL3 in each zone, and the state of output Out10 is given by the logic AND of AL2, AL.HB in each zone.

Each output can always be disabled by setting parameter out.x = 0 .
The state of outputs Out1,...,Out10 can be acquired by serial communication by means of bit variables.
The following additional configuration parameters are related to the outputs:

Ct. 1 = cycle time for output rL. 1 for heating control (Heat)
Ct. 2 = cycle time for output rL. 2 for cooling control (Cool)
rEL = alarm states AL1, AL2, AL3, AL4 in case of broken probe, Err, Sbr

Allocation of Reference Signals

160	rL. .	R/W	Allocation of reference signal
163	rL_ . .	R/W	Allocation of reference signal

NOTE: Parameters rL.1, ..., rL. 6 for each zone can be considered as internal states.
Ex.: To assign alarm AL1 to physical output OUT5, assign rL.1-Zone1=2 (AL1-alarm 1) and than assign parameter out.5=1 (rL.1-Zone1)

+ 32 for logic level denied in output
+128 to force output to zero
NOTE: continuous COOL OUTPUTS can be assigned codes $0,1,64$ and 65 only, with cycle time fixed at 100 ms

Table of Reference Signals		0
Value	Function	0
0	HEAT (heating control output) / in case of continuous output 0... $20 \mathrm{~mA} / 0 . . .10 \mathrm{~V}$	1
1	COOL (cooling control output) / in case of continuous output 0...20mA / 0...10V	
2	AL1 - alarm 1	
3	AL2 - alarm 2	
4	AL3 - alarm 3	
5	AL.HB or POWER_FAULT with HB alarm (TA1 OR TA2 OR TA3)	
6	LBA - LBA alarm	
7	IN1 - repetition of logic input DIG1	
8	AL4 - alarm 4	
9	AL1 or AL2	
10	AL1 or AL2 or AL3	
11	AL1 or AL2 or AL3 or AL4	
12	AL1 and AL2	
13	AL1 and AL2 and AL3	
14	AL1 and AL2 and AL3 and AL4	
15	AL1 or AL.HB or POWER_FAULT with HB alarm (TA1 OR TA2 OR TA3)	
16	AL1 or AL2 or (AL.HB or POWER_FAULT) with HB alarm (TA1 OR TA2 OR TA3)	
17	AL1 and (AL.HB or POWER_FAULT) with HB alarm (TA1 OR TA2 OR TA3)	
18	AL1 and AL2 and (AL.HB or POWER_FAULT) with HB alarm (TA1 OR TA2 OR TA3)	
19	AL.HB - HB alarm (TA2)	
20	AL.HB - HB alarm (TA3)	
21	Setpoint power alarm	
22	AL.HB - HB alarm (TA1)	
23	POWER_FAULT	
24	IN2 - repetition of logic input DIG2	
64	HEAT (heating control output) with fast cycle time 0.1 ... 20.0 sec . / in case of continuous output $4 \ldots 20 \mathrm{~mA} / 2 . . .10 \mathrm{~V}$	
65	COOL (cooling control output) with fast cycle time 0.1 ... 20.0 sec . / in case of continuous output $4 \ldots 20 \mathrm{~mA} / 2 \ldots 10 \mathrm{~V}$	

166	ri．$]$	R／W	Allocation of reference signal	Value	Function				
				2	AL1－alarm 1				2
170	ri． 4	R／W	Allocation of reference signal	3	AL2－alarm 2				
				4	AL3－alarm 3				
171	－1．5	R／W	Allocation of reference signal	5	AL．HB or POWER＿FAULT w／HB alarm（TA1 OR TA2 OR TA3）				35
				6	LBA－LBA alarm				
172	ri．E	R／W	Allocation of reference signal	7	IN1－repetition of logic input DIG1				
				8	AL4－alarm 4				4
				9	AL1 or AL2				
				10	AL1 or AL2 or AL3				
				11	AL1 or AL2 or AL3 or AL4				
				12	AL1 and AL2				160
				13	AL1 and AL2 and AL3				
				14	AL1 and AL2 and AL3 and AL4				
				15	AL1 or AL．HB or POWER＿FAULT with HB alarm（TA1 OR TA2 OR TA3）				
				16	AL1 or AL2 or（AL．HB or POWER＿FAULT）with HB alarm （TA1 OR TA2 OR TA3）				
				17	AL1 and（AL．HB or POWER＿FAULT）with HB alarm（TA1 OR TA2 OR TA3）				
				18	AL1 and AL2 and（AL．HB or POWER＿FAULT）with HB alarm （TA1 OR TA2 OR TA3）				
				19	AL．HB－HB alarm（TA2）				
				20	AL．HB－HB alarm（TA3）				
				21	Setpoint power alarm				
＋ 32 for logic level denied in output +128 to force output to zero				22	AL．HB－HB alarm（TA1）				
				23	POWER＿FAULT				
NOTE：continuous COOL OUTPUTS can be assigned codes $0,1,64$ and 65 only，with cycle time fixed at 100 ms				24	IN2－repetition of logic input DIG2				
$\begin{gathered} 152 \\ 9 \end{gathered}$	Et．！	R／W	OUT 1 （HEAT）cycle time	$\begin{array}{r} 1 . . .200 \\ (0.1 \ldots 20 . \end{array}$	0 sec $.0 \mathrm{sec})$	Set 0 for GTT function See POWER CONTROL	0	DIP5＝ （resistive	FF oad）
							4	DIP5 = (resistive	FF oad）
159	「上．を	R／W	OUT 2 （COOL）cycle time	$\begin{array}{r} 1 . . .200 \\ (0.1 \ldots 20 . \\ \hline \end{array}$	$\begin{aligned} & 0 \mathrm{sec} \\ & 0.0 \mathrm{sec}) \end{aligned}$				20

Read State

308		R
319	State of outputs rL．x MASKOUT	

Bit

0	State rL． 1
1	State rL． 2
2	State rL． 3
3	State rL． 4
4	State rL． 5
5	State rL． 6

$\begin{aligned} & 12 \\ & \text { Bit } \end{aligned}$	STATE rL． 1	R	OFF＝Output off ON＝Output on
$\begin{aligned} & 13 \\ & \text { Bit } \end{aligned}$	STATE rL． 2	R	$\begin{aligned} & \text { OFF = Output off } \\ & \text { ON = Output on } \end{aligned}$
$\begin{aligned} & 14 \\ & \text { Rit } \end{aligned}$	STATE rL． 3	R	OFF＝Output off ON＝Output on
$\begin{aligned} & 15 \\ & \text { Bit } \end{aligned}$	STATE rL． 4	R	$\begin{aligned} & \text { OFF = Output off } \\ & \text { ON = Output on } \end{aligned}$
$\begin{aligned} & 16 \\ & \text { Bit } \end{aligned}$	STATE rL． 5	R	OFF＝Output off ON＝Output on
17	STATE rL． 6	R	OFF＝Output off ON＝Output on

Allocation of Physical Outputs

607	ロぃじ ！	R／W	Allocation of physical output OUT 1
608	ロいL．を	R／W	Allocation of physical output OUT 2
609	ロut．〕	R／W	Allocation of physical output OUT 3
610	－ut． 4	R／W	Allocation of physical output OUT 4
611	ロット．5	R／W	Allocation of physical output OUT 5
612	日上L． 5	R／W	Allocation of physical output OUT 6
613	ロぃし．？	R／W	Allocation of physical output OUT 7
614	口ut．日	R／W	Allocation of physical output OUT 8
615	ロット．ヨ	R／W	Allocation of physical output OUT 9
616	口ぃ上，19	R／W	Allocation of physical output OUT 10

	Table of output allocations	1
0	Output disabled	
1	Output rL． 1 zone 1	2
2	Output rL． 1 zone 2	
3	Output rL． 1 zone 3	3
4	Output rL． 1 zone 4	
5	Output rL． 2 zone 1	
6	Output rL． 2 zone 2	4
7	Output rL． 2 zone 3	
8	Output rL． 2 zone 4	
9	Output rL． 3 OR rL． 5 zone 1	5
10	Output rL． 3 OR rL． 5 zone 2	
11	Output rL． 3 OR rL． 5 zone 3	
12	Output rL． 3 OR rL． 5 zone 4	6
13	Output rL． 4 AND rL． 6 zone 1	
14	Output rL． 4 AND rL． 6 zone 2	
15	Output rL． 4 AND rL． 6 zone 3	7
16	Output rL． 4 AND rL． 6 zone 4	
17	Output（rL． 3 OR rL．5）zone 1．．．zone 4	8
18	Output（rL． 4 AND rL．6）zone 1．．．zone 4	8
+32 to reverse output status only for Logic and Relay output		
NOTE：In 3－phase configuration，the state of physical output OUT1 is copied to OUT2 and OUT3．		17
In case of COOL OUTPUT $(5,6,7,8)$ are continuous，the same output functionscan not be used on other outputs．		18
Ex：If out． $1=1$（out rL． 1 zone 1 ）it is not possible to set out． 5 with the samecode，if out． 5 is continuous		

Read State

$\begin{aligned} & 82 \\ & \text { Rit } \end{aligned}$	State of output OUT 1	R	OFF = Output off ON = Active Output
$\begin{aligned} & 83 \\ & \text { Bit } \end{aligned}$	State of output OUT 2	R	OFF = Output off ON = Active Output
$\begin{aligned} & 84 \\ & \text { Bit } \end{aligned}$	State of output OUT 3	R	OFF = Output off ON = Active Output
$\begin{aligned} & 85 \\ & \text { Bit } \end{aligned}$	State of output OUT 4	R	OFF = Output off ON = Active Output
$\begin{aligned} & 86 \\ & \text { Bit } \end{aligned}$	State of output OUT 5	R	OFF = Output off ON = Active Output
$\begin{aligned} & 87 \\ & \text { Bit } \end{aligned}$	State of output OUT 6	R	OFF = Output off ON = Active Output
$\begin{aligned} & 88 \\ & \text { Bit } \end{aligned}$	State of output OUT 7	R	OFF = Output off ON = Active Output
$\begin{aligned} & 89 \\ & \text { Bit } \end{aligned}$	State of output OUT 8	R	OFF = Output off ON = Active Output
$\begin{aligned} & 90 \\ & \text { Bit } \end{aligned}$	State of output OUT 9	R	OFF = Output off ON = Active Output
$\begin{aligned} & 91 \\ & \text { Bit } \end{aligned}$	State of output OUT 10	R	OFF = Output off ON = Active Output

664	R	State of outputs

Bit	
0	OUT 1
1	OUT 2
2	OUT 3
3	OUT 4
4	OUT 5
5	OUT 6
6	OUT 7
7	OUT 8
8	OUT 9
9	OUT 10

Functionality Key

Settings

Setting The Setpoint

The active (control) setpoint (SPA) can be set by means of the local setpoint (_SP) or the remote setpoint (SP. $r S)$. A remote setpoint can assume the value of an auxiliary input or one set via serial line (SP.r).

The remote setpoint can be defined in absolute value or relative to the local setpoint; in the latter case, the control setpoint will be given by the algebraic sum of the set local and the remote setpoint.

Enable Alarm

Remote Setpoint

181	LP. ᄅ	R/W	Auxiliary analog input function	See: AUXILIARY ANALOG INPUT (LIN/TC)	0

The remote setpoint can be set by means of the auxiliary analog input by enabling the function with parameter tP. 2

$\begin{gathered} 18 \\ 136-249 \end{gathered}$	5P.r	R/W	Remote setpoint (SET gradient for manual power correction)		Setpoint Table		0
+4 set gradient in digit/sec. +8 manual power correction based on line voltage +16 disables saving of local setpoint _SP +32 disables saving of local manual power (at switch- off, returns to last value saved)					Type of Remote Set	Absolute/Relative	
				0	Digital (from serial line)	Absolute	
				1	Digital (from serial line)	Relative to local set (_SP o SP1 o SP2)	
				2	Auxiliary input	Absolute	
				3	Auxiliary input	Relative to set (SP o SP1 o SP2)	

| 250 | SERIAL_SP | R/W | Remote Setpoint from
 serial line | Lo.L....HI.L | 0 |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |

Shared Settings

Read Active Setpoint

1 $137-481$	$5 P R$	R	Active Setpoint
4		R	Deviation (SPA-PV)

Setpoint Control

Set Gradient

The "Set Gradient" function sets a gradual variation of the setpoint, with programmed speed, between two defined values. If this func-tion is active (G.SPother than 0), at switch-on and at auto/man switching the initial setpoint is assumed equal to the PV, and the local or selected set is reached with set gradient. Every variation of set, including variations of the local setpoint, is subject to the gradient. The value of remote setpoint SP.rS is not saved in eeprom.
The set gradient is inhibited at switch-on when selftuning is enabled.liliary input or one set via serial line (SP.r).
The remote setpoint can be defined in absolute value or relative to the local setpoint; in the latter case, the control setpoint will be given by the algebraic sum of the set local and the remote setpoint.

$\begin{gathered} 234 \\ 22 \end{gathered}$	5.5P		R/W	Set gradient		0.0 ...999.9 digit / min (digit / sec see SP.r)			0.0
259	「.5]		R/W	Set gradient relative to SP2		0.0 ...999.9 digit / min (digit / sec see SP.r)			0.0
265	Hot	R/W		Select specialized control functions		Table of Specialized Control			0
						Enable	Fault Action Power if PV is not stabilized	Enable Preheating softstart	
					0		FA.P		
					1	X	Average power		
					2		FA.P		
					3	X	FA.P		
					4		FA.P	X	
					5	X	Average power	X	
					6		FA.P	X	
					7	X	FA.P	X	
FA.P - see alarm for probe in short or connection error (SBR-ERR)					+8 enable GS. 2				

Multiset

The MULTISET function determines the local setpoint by selecting the value from Setpoint (SP.1) or from Setpoint 2 (SP.2) based on the state of a digital input or by setting from a serial line.
The variation between Setpoint 1 and Setpoint 2 can take place with gradient: parameter G.SP determines the speed for reaching Setpoint 1 and parame-ter G.S2 defines the speed for reaching Setpoint 2.
The MULTISET function is enabled with parameter hd. 1 and automatically enables the gradient function. Selection between Setpoint 1 and Setpoint 2 can be seen by means of LED.

FA.P - see alarm for probe in short or connection error (SBR-ERR)

Functional Diagram

Controls

PID Heat/Cool Control

The controller can manage a heating output and a cooling output in a completely independent manner. Heating and cooling parameters are described below. Parameters for PID (proportional band, integral and derivative time) control are typically calculated by means of Autotuning and Selftuning functions.

Control Actions

Proportional action:

action in which contribution to output is proportional to deviation at input (deviation = difference between controlled variable and setpoint

Derivative action:

action in which contribution to output is proportional to rate of variation input deviation.
Integral action:
action in which contribution to output is proportional to integral of time of input deviation.

Control Actions

Increasing the proportional band reduces oscillation but increases deviation.
Reducing the proportional band reduces deviation but causes oscillation of the controlled variable (excessively low proportional band values make the system unstable).
An increase in Derivative Action corresponds to an increase in Derivative Time, reduces deviation, and prevents oscillation up to a critical Derivative Time value, beyond which deviation increases and there are prolonged oscillations.
An increase in Integral Action corresponds to a decrease in Integral Time, tends to annul deviation between the controlled variable and the setpoint at rated operating speed.
If the Integral Time value is too long (weak Integral Action), there may be persistent deviation between the controlled variable and the setpoint.
For more information on control actions, contact Chromalox.

Heat/Cool Control with Separate or Superimposed Band

Output with separate band

Control output with only proportional action in case of proportional heating band separate from cooling band.

Output with superimposed band

Control output with only proportional action in case of proportional heating band superimposed on cooling band.

PV = process variable
$\mathrm{SP}=$ heating setpoint
h_Pb = heating proportional band

Heat/Cool Control with Relative Gain

This control mode (enabled with parameter Ctr = 14) asks you to specify cooling type. The PID cooling parameters are then calculated based on heating parameters in the ratio specified (ex: C.ME = 1 (oil), H_Pb = 10, H_dt =1, H_It = 4 implies:

C_Pb $=12.5, \mathrm{C} _$dt $=1, \mathrm{C}$ It $=4$)

Apply the following values when setting cycle times:
Air T Cool cycle $=10 \mathrm{sec}$.
Oil T Cool cycle $=4 \mathrm{sec}$.
Water T Cool cycle $=2 \mathrm{sec}$.
NB.: Cool parameters cannot be changed in this mode.

PID Parameters

617 R/W | Selection of process variable of |
| :---: |
| zone / Zone reference power |

(*):

- The reference power of a slave zone in automatic mode is the power
of a master zone in automatic or manual mode.
The reference power of a slave zone in manual mode is the zone
manual power.

| | Table of Selections | 1. | Zone 1 | Zone 2 | 3
 Zone 3 |
| :---: | :--- | :---: | :---: | :---: | :---: | | 4 |
| :---: |
| Zone 4 |

180	ĽL	R/W	Control Type

Table of Heat/Cool Controls		6
0	P heat	
1	P cool	
2	P heat / cool	
3	PI heat	
4	PI cool	
5	PI heat / cool	
6	PID heat	
7	PID cool	
8	PID heat / cool	
9	ON-OFF heat	
10	ON-OFF cool	
11	ON-OFF heat / cool	
12	PID heat + ON-OFF cool	
13	ON-OFF heat + PID cool	
14	PID heat + cool with relative gain (see parameter C.MEd)	

Select sample time for derivative action
+0 sample 1 sec.
+16 sample 4 sec.
+32 sample 8 sec .
+64 sample 240 msec .
+128 No Reset of integral component at setpoint change
PID heat + cool with relative gain
Note: the LBA alarm is not enabled in the ON/OFF control.

| 76 | E. It | R/W | Integral Cooling Time | $0.00 \ldots 99.99 \mathrm{~min}$ | 4.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 77 | C. dt | R/W | Deriviative Cooling Time | $0.00 \ldots 99.99 \mathrm{~min}$ | 1.00 |

Note: Parameters c.PB, c.lt and c.dt are read-only if heat/cool control is enabled with relative gain (Ctr = 14).

| L.ME | R/W | Select Cooling Fluid | $0 \ldots .2$ | | Relative Gain (rG) | 0 |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: |

Read State

The following registers are accessible via serial line:

2				
$132-471$	PL.	R	Value of control outputs $(+$ Heat/-Cool)	(W - only in manual mode at address 252)

Advanced Settings

$\begin{aligned} & 39 \\ & 484 \end{aligned}$	-. 5P	R/W	Cooling setpoint relative to heating setpoint	$\pm 25.0 \%$ f.s.	0.0
78	「51	R/W	Manual reset (value added to PID input)	-999... 999 scale points	0
516	9.55	R/W	Reset power (value added directly to PID output)	-100.00....100.0 \%	0.0
79	R.rs	R/W	Antireset (limits integral action of PID)	$\begin{aligned} & 0 . . .9999 \text { scale } \\ & \text { points } \end{aligned}$	0
80	FFd	R/W	Feedforward (value added to PID output after processing)	-100.00....100.0 \%	0.0
$\begin{aligned} & 42 \\ & 146 \end{aligned}$	hPh	R/W	Maximum limit heating power	0.0 ... 100.0 \%	100.0
254	HPL	R/W	Minimum limit heating power (not available for double heat/ cool action)	0.0 ... 100.0 \%	0
43	■PH	R/W	Maximum Limit Cooling Power	0.0 ...100.0 \%	100.0
255	EPL	R/W	Minimum limit cooling power (not available for double heat/ cool action)	0.0 ...100.0 \%	0.0
765	PPEr	R/W	Percentage of output power	0.0 ... 100.0 \%	100.0
766	PoFs	R/W	Offset of Output Power	-100.0 ...100.0 \%	0.0

763	Lal化	R/W	Gradient for Output Control	$0.0 \ldots 200.0 \%$ sec	set to 0 to disable	0.0
764	La. P	R/W	Minimum Trigger Output	$0.0 \ldots 50.0 \%$	set to 0 to disable	0.0

Functional Diagram

Automatic / Manual Control

By means of the digital input function you can set the controller in MAN (manual) and set the control output to a constant value changeable by means of communication.
When returning to AUTO (automatic), if the variable is within the proportional band, switching is bumpless.

Hold Function

The process variable value and the setpoints remain "frozen" for the time the digital input is active.
By activating the digital input with the Hold function when the variable is at values below the setpoint, a setpoint memory reset de-energizes all energized relays and resets all memory latches.

140	d	R/W	Digital Input Function	See: Table of digital input functions	0
618	-「コ	R/W	Digital Input Function 2		
$\begin{gathered} 64 \\ \text { Rit } \end{gathered}$	Hold	R/W	OFF = Disable Hold ON = Enable Hold		

Manual Power Correction

This function, available on models with CV diagnostics option, will allow for a correction of power delivered based on the reference line voltage (riF). To use this function, the controller must have a CT (current transformer) and a VT (voltage transformer).
The \% value of the correction (Cor) is freely settable and acts in inverse proportion to the line voltage change. The \% change in the manual pow-er is limited to value set in the correction (Cor). The maximum manual power correction is limited to $\pm 65 \%$.
The function is activated/deactivated by means of parameter SP.r set to +8 . See table below.

Example:

Settings: Cor $=10 \%$; riF = 380V; SP.r = value +8 ; instrument in manual; line voltage 380VAC, and manual power set at 50\%.
With a 10% increase in line voltage, $380 \mathrm{~V}+10 \%(380 \mathrm{~V})=418 \mathrm{~V}$, there is a decrease in set manual power equal to the same \% of change: $50 \%-10 \%(50 \%)=45 \%$.

Compensation of the voltage transformer read to maintain output power at a constant level.

506	Eror	R/W	Correction of manual power based on line voltage	0.0 ... 100.0 \%		
$\begin{gathered} 18 \\ 136-249 \end{gathered}$	$5 P .5$	R/W	Remote setpoint (SET gradient for manual power correction)	Setpoit Table		
Type of Remote Set Absolute/Deviation						
				0	Digital (from serial line)	Absolute
				1	Digital (from serial line)	Deviation local set (_SP o SP1 o SP2)
				2	Auxiliary input	Absolute
				3	Auxiliary input	Deviation set (_SP o SP1 o SP2)
				+4 set gradient in digit/sec. +8 correction of manual power based on line voltage +16 disable saving of local setpoint _SP +32 disable saving of local manual power (at switch-off returns to last value saved)		

Manual Tuning

A) Enter the setpoint at its working value.
B) Set the proportional band at 0.1% (with on-off type setting).
C) Switch to automatic and observe the behavior of the variable. It will be similar to that in the figure.
D) The PID parameters are calculated as follows: Proportional band

(V max -V min) is the scale range.

Integral time $\mathrm{It}=1.5 \times \mathrm{T}$
Derivative time $\mathrm{dt}=\mathrm{It} / 4$
E) Switch the controller to manual, set the calculated parameters (activate the PID control by setting a cycle time for relay outputs, if any), switch to automatic.
F) To assess parameter optimization, change the setpoint value if possible and check temporary behavior. If oscillation persists, increase the value of the proportional band; if response is too slow, decrease the value.

See: CONTROL - PID Parameters

Autotuning

Enabling the autotuning function blocks the settings of the PID parameters.
Autotuning continues to measure the system oscillations, seeking as quickly as possible the PID parameter values that reduce the oscillation; it does not intervene if the oscillations drop to values below 1.0% of the proportional band.
It is interrupted if the setpoint is changed, and resumes automatically with a constant setpoint. The calculated parameters are not saved; if the instrument is switched off the controller resumes with the parameters programmed before autotuning was enabled.
Autotuning terminates the procedures with switching to manual.
Enabling the autotuning function blocks the settings of the PID parameters.
It can be two types: continuous or one shot.
Continuous autotunìng is enabled with parameter Stu (values 1, 3, 5); it continues to measure the system oscillations, seeking as quickly as possible the PID parameter values that reduce the oscillation; it does not intervene if the oscillations drop to values below 1.0\% of the proportional band.
It is interrupted if the setpoint is changed, and resumes automatically with a constant setpoint.
The calculated parameters are not saved if the instrument is switched off, in case of switching to manual or disabling the code in configuration, and controller resumes with the parameters programmed before autotuning was enabled.

The calculated parameters are saved when the function is enabled via digital input or via A/M key (start / stop) at stop.
One-shot autotuning can be activated manually or automatically with parameter Stu (as can be seen on the table, the values to be set depend on enabling of Selftuning or Softstart).
It is useful for calculating PID parameters when the system is in the vicinity of the setpoint; it produces a variation on the control output of a maximum of $\pm 100 \%$ of the current control power limited by h.PH - h.PL (heat), c.PH - c.PL (cool) and assesses the effects in overshoot over time. The calculated parameters are saved.
Manual activation (code Stu $=8,10,12$) by setting the parameter directly or via digital input or key.
Automatic activation (code Stu $=24,26,28$ with error range of 0.5%) when the PV-SP error exceeds the defined range (programmable at $0.5 \%, 1 \%, 2 \%, 4 \%$ of full scale).
Activation is inhibited if PV $<5 \%$ or $\mathrm{PV}>95 \%$ of input scale.

NB: at switch-on after selftuning, after switching to MANUAL, after software shutdown or after a setpoint change, automatic activation is inhibited for an interval equal to five times the integral time, with a minimum of 5 minutes.

An identical interval has to lapse after a one-shot run.

See: CONTROL - PID Parameters

Selftuning, autotuning, softstart table				0
	Autotuning continuous	Selftuning	SoftStart	
0	NO	NO	NO	
1	YES	NO	NO	
2	NO	YES	NO	
3	YES	YES	NO	
4	NO	NO	YES	
5	YES	NO	YES	
Autotuning One-shot				
8*	WAIT	NO	NO	
9	GO	NO	NO	
10*	WAIT	YES	NO	
11	GO	YES	NO	
12*	WAIT	NO	YES	
13	GO	NO	YES	

Selftuning, autotuning, softstart table
0

[^0]| 140 | dis | R/W | | Digital Input Function | See: Table of digital input functions | 0.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 618 | - ¢ | R/W | | Digital Input 2 Function | | 0.0 |
| 29 bit | AUTOTUNING | R/W | | OFF = Stop Autotuning
 ON = Start Autotuning | | |

Read State

Selftuning

This function is valid for single-action (either heat or cool) systems and for double-action (heat/cool) systems.
Selftuning is activated to calculate the best control parameters when starting the process. The variable (example:
temperature) must be the one assumed at zero power (room temperature).
The controller supplies the maximum power set until reaching an intermediate point between starting value and the setpoint, then resets power. The PID parameters are calculated by evaluating superelongation and the time needed to reach the peak (N.B.: This action is not considered in ON/OFF control).
When the function is completed, it disengages automatically, and the control proceeds to reach the setpoint.
How to activate selftuning:
A. Activation at switch-on

1. Set the setpoint to the desired value.
2. Enable selftuning by setting parameter Stu to 2
3. Switch off the instrument.
4. Make sure that temperature is near room temperature.
5. Switch on the instrument.
B. Activation via serial command
6. Make sure that temperature is near room temperature.
7. Set the setpoint to the desired value.
8. Run the Start Selftuning command.

The procedure runs automatically until termination. At termination, the new PID parameters are saved: proportional band, integral and derivative times calculated for the current action (heat or cool). In case of double action (heat + cool), the parameters for the opposite action are calculated by maintaining the initial ratio between the parameters (example: $\mathrm{Cpb}=\mathrm{Hpb}$ * K; where $\mathrm{K}=\mathrm{Cpb} / \mathrm{Hpb}$ when selftuning is started). At termination, the Stu code is automatically cancelled.
Note: The procedure does not start if temperature exceeds the setpoint for heat control, or is below the setpoint for cool control.
In this case, the Stu code is not cancelled. It is advisable to enable the LEDs to signal selftuning state. By setting parameter Ld.St $=4$ on the Hrd menu, the appropriate LED will light up or flash when selftuning is active.

	Autotuning continuous	Selftuning	SoftStart
0	NO	NO	NO
1	YES	NO	NO
2	NO	YES	NO
3	YES	YES	NO
4	NO	NO	YES
5	YES	NO	YES
Autotuning One-shot			
8*	WAIT	NO	NO
9	GO	NO	NO
10*	WAIT	YES	NO
11	GO	YES	NO
12*	WAIT	NO	YES
13	GO	NO	YES

140	drim	R/W	Digital Input Function	See: Table of digital input functions	0.0
618	-	R/W	Digital Input 2 Function		0.0
3 bit	SELFTUNING	G/W	OFF = Selftuning in Stop ON = Selftuning in Start		
305	R/W		ument state (STATUS_W)	Table of instrument settings	0

Read State

Soft Start

If enabled, this function partializes power based on a percentage of time elapsed since instrument switch-on compared to the set time of $0.0 \ldots 500.0 \mathrm{~min}$ ("SoFt" parameter CFG phase). Softstart is an alternative to selftuning and is activated after each instrument switch-on. Softstart is reset when switching to manual.

Read State

63	STATE	R	OFF $=$ Softstart in Stop
bit	SOFTSTART		Softstart in Start

Start Mode

Software Shutdown

Running the software shutdown procedure causes the following:

1) Reset of Autotuning, Selftuning and Softstart.
2) Digital input (if present) enabled only if assigned to SW shutdown function.
3) In case of switch-on after SW shutdown, any ramp for the set (set gradient) starts from the PV.
4) Outputs OFF: except for rL. 4 and rL. 6 which are forced ON.
5) Reset of HB alarm.
6) Reset of LBA alarm.
7) The Heat and Cool bit on the state word STATUS_ STUMENTO and POWER are reset.
8) At shutdown, the current power is saved. At switchon, integral power is recalculated as the difference between saved power and proportional power; this calculation is defined as "desaturation at switchon."
9) Alarms AL1 ...AL4 can be enabled or disabled by the oFF.t parameter.

Read State

68	DIGITAL INPUT 1	R	OFF = Digital input 1 off ON = Digital input 1 on	See: Table of digital input functions	
$\begin{aligned} & 92 \\ & \text { bit } \end{aligned}$	$\begin{aligned} & \text { DIGITAL INPUT } \\ & 2 \end{aligned}$	R	OFF = Digital input 2 off ON = Digital input 2 on		
296			uning and selftuning ble state (FLG_PID)		0
305	R/W	Instr	ment state (STATUS_W)	Table of instrument settings	0

Specialized Control Functions

These settings are available for fast acting systems that have a tendency for the main sensor to break, but it is desirable that the controller continue to operate in manual mode. Settings for fast cycle times down to 0.1 second can be set. A suitable application would be Specialized Control Functions in plastics molding presses.
The main functions are:

Sensor Fault Action SBR; Power Setting

In the case of a SBR, sensor break or fault, then the
user can decide the controls action of the \% output. Using the "HOT" (address 265) the user decides the control action. The choice is a pre-decided user \% output "FA.P" (address 228) or an Average \% power output. The Average \% Power output calculation is discussed in the next section titled POWER ALARM.
The alarm reset and reference power update take place only at switch-on or after a setpoint change.
The alarm is not activated if the control (CTR) is ON/ OFF type, during Selftuning and in Manual.

FA.P - see alarm for probe in short or connection error (SBR-ERR)

| 228 | FR.P | R/W | Fault Action Power (supplied in
 conditions of broken probe) | -100.0 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Read State | | | | |
| 26
 Bit | HB ALARM STATE OR
 POWER_FAULT | R | OFF $=$ Alarm off
 ON $=$ Alarm on | |
| 80 | State of Power alarm | R | OFF $=$ Alarm off
 ON $=$ Alarm on | |

Power Alarm

The alarm signals any power changes (OuP) after the process variable (PV) has stabilized on the setpoint (SP). The time beyond which the process variable is considered stable is 300 sec (always on with hot runners).
The reference power update take place only at switchon or after a setpoint change.
If the process variable leaves the stabilization band after the first stabilization, this does not influence the alarm.

In case of SBR:

- if the PV has not yet stabilized, either the average power over the last 5 minutes or FAP power is supplied (depending on the setting of the HOT parameter).
- if the PV has stabilized the average power over the last 5 minutes is supplied.
Function:
If necessary, assign an output (rL.2...6) for the power alarm.

Set the band (b.ST) within which the process variable is considered stable after 300 sec . have elapsed.

Set the band (b.PF) outside which the alarm is activated after time PF.t has elapsed.

The reference power is the active power after 300 sec. have elapsed.

The alarm reset and reference power update take place only at switch-on or after a setpoint change.

The parameters for alarm power are:

Softstart for Preheating

This function allows the controller to pre-heat at specific setpoint or via a power \& time setting. Once finished the control re-sumes it normal PID control settings.
Softstart becomes active only at switch-on, with man-ual-automatic switching during Softstart (the time restarts from 0), and if the process variable is below setpoint SP.S.

265	HaL	R/W	Select Specialized Control Functions			Table of specialized control functions				0
						Hot	Enable Specialized Control	Fault Action Power if PV is not stabilized	Enable Preheating softstart	
						0		FA.P		
						1	X	Average power		
						2		FA.P		
						3	X	FA.P		
						4		FA.P	X	
						5	X	Average power X		
						6	FA.P	X		
						7	X	FA.P	X	
						+8 en	nable GS. 2			
							P - see alarm for probe in	in short or connection	(SBR-ERR)	
263	5P.5	R/W		Softst preheating	rt setpoint of hot runners)		Lo.L....HI.L			0
264	5ロ. P	R/W		Softs preheating	art power of hot runners)		$\begin{gathered} -100.00 \ldots . \\ . . .100 .0 \% \end{gathered}$			0.0
147	Gロ.F	R/W		Soft	art TIme		0.0 ...500.0 min			0.0
$\begin{aligned} & 30 \\ & \text { bit } \end{aligned}$	RESTAR	SOF	ART	T R/W	$\begin{array}{r} \text { OFF }= \\ \text { ON }=\text { Restart } \end{array}$	tstart				

Read State

63	STATE OF SOFTSTART	R	OFF = Softstart in Stop ON

Heating Output (Fast cycle)

For outputs rL. 1 (Out 1) and rL. 2 (Out 2) you can set a fast cycle time (0.1 ... 20 sec) by setting the parameter to 64 (Heat) or 65 (Cool).

SSR Control Modes

The C4-IR has the following power control modes:

- PA Modulation via variation of phase angle
- ZC, BF, HSC, modulation via variation of number of conduction cycles with zero crossing trigger.
PA phase angle: this mode controls power on the load via modulation of the phase angle.
ZC zero crossing: this type of operation reduces EMC emissions. This mode controls power on the load via a series of conduction ON and non conduction OFF cycles.
The cycle time is constant and can be set from 1 to 200 sec (or from 0.1 to 20.0 sec).
BF burst firing: this mode controls power on the load via a series of conduction ON and non conduction OFF cycles.
The ratio of the number of ON cycles to OFF cycles is proportional to the power value to be supplied to the load.

The repeat period or cycle time is kept to a minimum for each power value.
Parameter bF.Cy defines the minimum number of conduction cycles, settable from 1 to 10.
In case of 3-phase load without neutral or closed delta, BF.Cy >= 5 has to be set to ensure correct operation (balancing of current in the 3 loads).
HSC Half Single Cycle: this mode corresponds to a BF that includes ON and OFF half-cycles.
It is useful for reducing flicker with short-wave IR loads (and is applied only to single-phase or 3 -phase with neutre or open delta loads). Start mode is set with parameter Hd. 5
Control of maximum rms current (whose value is set in parameter Fu.tA) can always be enabled with parameter Hd. 5 in every power-on mode.
The cycle time can be set with two different resolutions in seconds or tenths of a second based on the type of heat or cool function assigned to outputs rL1 and rL2.
The use of short cycle times (<2-3 sec) is always recommended in case of control with SSRs.

Table of Trigger Modes						141	$\begin{gathered} \text { DIP5 = OFF } \\ \text { (resistive load) } \end{gathered}$
	Phase Soft Start	Trigger Mode in Normal Operation (*)	BF Mode	RMS Peak Current Control			
				in Soft Start	in normal operation		
0	NO	ZC/BF	-	NO	NO	32	$\begin{gathered} \text { DIP5 = OFF } \\ \text { (resistive load) } \end{gathered}$
1	YES	ZC/BF	-	NO	NO		
2	NO	PA	-	NO	NO		
3	YES	PA		NO	NO		

NB: In case of a 3-phase load, you can set a different value from parameter FU.tA for each zone (ex. to control an unbalanced 3 -phase load).

Softstart or Start Ramp

This type of start can be enabled either in phase control or pulse train mode and acts via control of the conduction angle. It is enabled with parameter Hd.5.
The softstart ramp starts from a zero conduction angle and reaches the angle set in parameter PS.HI in the time set in parameter PS.tm, from 0.1 to 20.0 sec .
With parameter Hd. 5 (+64), you can configure a linear softstart in power, i.e., starting from zero you reach the power value corresponding to the maximum conduction angle set in PS.HI. Softstart ends before the set time if power reaches the corresponding value set in manual control or calculated by PID.
Control of maximum peak current can be enabled with parameter Hd. 5 during the ramp phase; peak value is
settable in parameter PS.tA. This function is useful in case of short circuit on the load of loads with high temperature coefficients to automatically adjust start time to the load.

The softstart ramp activates at the first start after pow-er-ON and after a software reboot. It can be reactivated via
software control by writing bit 108 or automatically if there are OFF conditions for a time exceeding the one settable in PS.oF (if $=0$ the function is as if disabled).
The ramp can also be enabled with parameter Hd. 5 (+256) after a software shutdown, i.e., zero is reached in the set time from delivered power.

Read State

106 bit	State of Phase Softstart Ramp	R	OFF = Ramp not active ON = Ramp active
107 bit	State of Phase Softstart Ramp	R	OFF = Ramp not ended ON = Ramp ended

NB: In case of a 3-phase load, you can set a different value from parameter PS.tA for each zone (ex. to control an unbalanced 3-phase load).

Delay Triggering

In firing modes ZC and BF, with inductive loads, this function inserts delay triggering in the first cycle.
The delay is expressed in degrees settable in parameter dL.t, from 0 to 90 degrees. The function is enabled with parameter Hd. 5 (+32).

The function activates automatically if there are OFF conditions for a time exceeding the one settable in dL.oF (if =0 the function is as if disabled).

- Optimized Delay-Triggering value for transformer: 80°
- Optimized Delay-Triggering value for 3-phase transformer: $90^{\circ}, 90^{\circ}, 50^{\circ}$

$0 \ldots 90^{\circ}$		80
$0 \ldots 10000 \mathrm{~ms}$		80

Feedback Modes

The C4-IR has the following feedback modes:

- V-Voltage
- $\quad \mathrm{V}^{2}$ voltage
- I-Current
- $\quad \mathrm{I}^{2}$ current
- P-Power

A control mode is enabled with pa-rameter Hd. 6

Voltage feedback (V)

To keep voltage on the load constant, this compensates possible variations in line voltage with reference to the rated voltage saved in riF.V. (expressed in Vrms).
The voltage value maintained on the load is (ref. $\mathrm{V}^{*} \mathrm{P} \%$ _ pid_man/100) and is indicated in the Modbus 757 register.

Voltage feedback (V2)

To keep voltage on the load constant, this compensates possible variations in line voltage with reference to the rated voltage saved in riF.V. (expressed in Vrms).
The voltage value maintained on the load is (rif. $\mathrm{V}^{\star} \mathrm{V}$ (P\%_pid_man/100)), and is indicated in the Modbus 757 register.

Current feedback (I)

To keep current on the load constant, this compensates possible variations in line voltage and/or variations in load impedance with reference to the rated current saved in riF.I. (expressed in Arms).
The current value maintained on the load is (rif.l* $\mathrm{P} \%$ _ pid_man/100), and is indicated in the Modbus 757 register.

Current feedback (I2)

To keep current on the load constant, this compensates possible variations in line voltage and/or variations in load impedance with reference to the rated current saved in riF.I. (expressed in Arms).
The current value maintained on the load is (rif.I* V (P\%_pid_man/100)), and is indicated in the Modbus 757 register.

Power feedback \mathbf{P}

To keep power on the load constant, this compensates both variations in line voltage and variations in load impedance with reference to the rated power saved in riF.P. (expressed in KWatt).
The current value maintained on the load is (rif.P*P\%_ pid_man/100), and is indicated in the Modbus 757 register.

Feedback calibration can be activated from the digital input (parameters DIG and DIG.2) or by serial control (ref. bit113), and MUST be activated only with Hd.6=0 (the required Hd. 6 value can be set only after calibration) and preferably with maximum power on the load (ex. P_man or P_pid 0 100\%).
If you change function mode (PA, ZC, BF, HSC), you have to re-run the Feedback calibration procedure.
Voltage V (or current I or power P) feedback corrects the \% of conduction with a maximum settable value in parameter Cor.V (or Cor.I or Cor.P).
For non-linear loads (ex.: Super Kanthal or Silicon Carbide) the automatic calibration procedure is not necessary. Set the value of parameters ref.V, ref. I, ref. P based on the specific nominal of the load shown on the data-sheet (ref. C4-IR Installation Guide).

Read State

757	Ar if	R	Reference of feedback	0.0 ...999.9 V	Setpoint of V, I, P to maintain 0.0 ...999.9 A on load
				0.0 ...999.9 A	
				0.0 ...99.99 kW	

HEURISTIC Control power

It is useful to be able to limit the delivery of total power to the loads in order to avoid input peaks from the sin-gle-phase power line.

This condition occurs during switch-on phases when the machine is cold; the demand for heating power is 100% until temperatures near the setpoint are reached. It is also useful to avoid simultaneity of conduction when there is ON-OFF modulation for temperature maintenance.
The cycle time must be identical for all zones; the power percentage for each zone is limited to that necessary to maintain current within set limits.

This function acts by enabling the control to search for the most appropriate input combinations.
Example 1:
4 loads 380V- 32A (zone 1), 16A (zone 2), 25A (zone 3), 40A (zone 4)
(maximum current is 113 A in case of simultaneity of conduction).
Current limit I.HEU=50A.
The following combinations of conduction are possible: (to define the number of combinations, remember that the combinations without repetitions are $=n!/(k!*(n-$ k)!)
$11+12=48 \mathrm{~A}$
$11+13=57 A$
$11+14=72 A$
$12+13=41 A$
$12+14=56 A$
$13+14=65 A$
$11+12+13=73 A$
$11+\mid 2+14=88 A$
$12+I 3+I 4=81 A$
$11+\mid 3+14=97 A$
$|1+|2+|3+| 4=113 A$
The combination corresponding to current values below the limit value are:
$11+12=48 \mathrm{~A}$
$12+13=41 A$
The one with lower current is given by zone 2 and zone 3.

In the single cycle time for the enabled zones, the delivery of power may be reduced to respect the maximum current limit.

The time distribution for activation of the zones is calculated at the start of each cycle:
Ptot $=P 1+P 2$ (if P2>P3) + P3 (if P3>P2) + P4
Simultaneity is allowed for zones 2 and 3 .

If $P 1=100 \%, P 2=100 \%, P 3=100 \%, P 4=100 \%$
Ptot $=300 \%$; since Ptot $>100 \%$, the conduction time of the zone x is obtained by $P x$ * (100/Ptot)
P1,2,3,4 delivered $=100 \%{ }^{*} 0.33=33 \%$

If $P 1=100 \%, P 2=50 \%, P 3=0 \%, P 4=25 \%$
Ptot $=175 \%$; since Ptot $>100 \%$, the conduction time of the zone x is obtained by Px * (100/Ptot)
$P 1$ delivered $=100 \% * 0.57=57 \%$
P 2 delivered $=50 \% * 0.57=28.5 \%$
P3 delivered $=0 \% * 0.57=0 \%$
P4 delivered $=25 \% * 0.57=14.2 \%$

NOTE: Only for GFX4-IR output OUT1 ...OUT4 with slower cycle time (1.200sec) all HEAT or all COOL.

Maximum current for heuristic power control

Table for enabling heuristic power				
	Zone 1	Zone 2	Zone 3	Zone 4
0				
3	X	X		
5	X		X	
6		X	X	
7	X	X	X	
9	X			X
10		X		X
11	X	X		X
12			X	X
13	X		X	X
14		X	X	X
15	X	X	X	X

Heuristic power table
0.0 ... 64.0 for C4-IR 30 kW
0.0 ... 128.0 for C4-IR 60 kW
0.0 ... 160.0 for C4-IR 80 kW

heterogeneous Power Control

Available only for Mod. 80 kW 57A full scale.
This function matches that of a thermal cutout that disconnects the load based on instantaneous input. The load is disconnected based on a preset priority.
Zone 1 has priority: in case of overload, zone 4 is disconnected, followed by zone 3 , etc.

The maximum total controllable current in four zones for the 80 kW model is 160A.
The maximum current in a single zone is 57 A .
Example: you can control three 50A loads and one 10A load without limits. With four 50A loads, if there is simultaneity, the load connected to zone 4 is disconnected.

Table for enabling heterogeneous power				
	Zone 1	Zone 2	Zone 3	Zone 4
0				
1	X	X		
2		X	X	
3	X	X	X	
4			X	
5	X		X	X
6		X	X	x
7	X	X	X	X
8			X	X
9	X		X	X
10		X		X
11	X	X		X
12			X	X
13	X		X	X
14		x	X	X
15	X	X	X	X

$$
\begin{aligned}
& \text { Heterogeneous power table } \\
& 0.0 \text {... } 64.0 \text { for C4-IR } 30 \mathrm{~kW} \\
& 0.0 \text {... } 128.0 \text { for C4-IR } 60 \mathrm{~kW} \\
& 0.0 \text {... } 160.0 \text { for C4-IR } 80 \mathrm{~kW}
\end{aligned}
$$

Virtual Instrument Control

Virtual instrument control is activated by means of parameter hd.1.

By setting parameters S.In and S.Ou you can enable the writing of some parameters via serial line, set the value of inputs and the state of outputs.
You have to enable alarm setpoints AL1, ..., AL4 when write operations are continuous, and you don't have to keep the last value in eeprom.

+16 For Heat/Cool control Ctr only: CT connected to cool output

Enabling the PV input means being able to exclude the local Tc or RTD acquisition and replace it with the value written in the register VALUE_F.
Enabling digital input IN lets you set the state of this input, for example to run MAN/AUTO switching with the writing of bit 7 in the register V_IN_OUT.
Likewise, you can set the on/off state of outputs OUT1, ..., OUT10 and of the LEDs by writing bits in the register V_IN_OUT.

Table of virtual register addresses

\left.	Parameter	Bit	Resource Enabled		Address of Image
					$\right)$

* the value to be set is in the range $0 . . .1000$ if the corresponding rL. x is configured " 0 " or in the range $0 . . .-1000$ if the corresponding rL.x is configured " 1 ".

Hardware and Software Information

The following data registers can be used to identify the controller HW/SW and check its operation.

At value SV on the C4-OP display, the figures indicate the value of bits as follows:

- THOUSANDS and HUNDREDS (Power C4-IR) correspond to bits 7 to 9
- TENS (COOL outputs) correspond to bits 1 to 4

In correspondence to the SV value on the C4-OP display, the digits indicate bit values as follows:

- TENS (auxiliary inputs) correspond to bits 0 to 1
- ONES (fieldbus interface) correspond to bits 6 to 15
(*) In correspondence to the SV value on the C4-OP display, the digits indicate bit value as follows:
- TENS (auxiliary inputs) correspond to bits 0 to 1
- ONES (fieldbus interface) corresponds to bits 6 to 14

	Table of main input errors
0	No Error
1	Lo (Process variable value < Lo.S)
2	Hi (Process variable value $>$ Hi.S)
3	ERR (third wire interrupted for PT100 or input val- ues below minimum limits (ex. for TC with connec- tion error)
4	SBR (Probe interrupted or input values beyond maximum limits

Table of hardware configuration codes

Bit	Correspondence	Value Indicated by C4-OP(*)
0	$=1$ OUTPUT COOL absent	0
$1=1$ OUTPUT COOL relay	R	
2	$=1$ OUTPUT COOL logic	D
3	= OUTPUT COOL continuous $0 . . .20 \mathrm{~mA} / 0 \ldots 10 \mathrm{~V}$	t
4$=1$ OUTPUT COOL triac 250VAC 1A	C	
5	-	
6	-	
7	$=1$ C4-IR 30KW	30
8	$=1$ C4-IR 60KW	60
9	$=1$ C4-IR 80KW	80

Table of auxiliary input errors

Bit	Correspondence	Value Indicated by C4-OP(*)
0	$=1$ INPUT AUX absent	0
1	$=1$ INPUT AUX TC $/ 60 \mathrm{mV}$	1
2	-	
3	$=1$ FIELDBUS ETH4 (Profinet)	
4	$=1$ FIELDBUS ETH5	
5	$=1$ FIELDBUS ETH6	
6	$=1$ FIELDBUS absent	O
7	$=1$ FIELDBUS MODBUS	m
8	$=1$ FIELDBUS PROFIBUS	P
9	$=1$ FIELDBUS CANOPEN	C
10	$=1$ FIELDBUS DEVICENET	D
11	$=1$ FIELDBUS ETHERNET	E
12	$=1$ FIELDBUS EUROMAP66	C
13	$=1$ FIELDBUS ETH3	3
14	$=1$ FIELDBUS ETH2 (ETHERCAT)	2

$\begin{aligned} & 693 \\ & 697 \end{aligned}$	UPdF	R	Fieldbus software version	Profibus		Canopen		DeviceNet	
				bAu.F	baudrate	bAu.F	baudrate	bAu.F	baudrate
695	Eodf	R	Fieldbus node	0	12.00 Mbit/s	0	$1000 \mathrm{Kbit} / \mathrm{s}$	0	125 Kbit/s
				1	6.00 Mbit/s	1	$800 \mathrm{Kbit} / \mathrm{s}$	1	$250 \mathrm{Kbit} / \mathrm{s}$
696	Brif	R	Fieldbus baudrate	2	$3.00 \mathrm{Mbit} / \mathrm{s}$	2	$500 \mathrm{Kbit} / \mathrm{s}$	2	$500 \mathrm{Kbit} / \mathrm{s}$
				3	$1.50 \mathrm{Mbit} / \mathrm{s}$	3	$250 \mathrm{Kbit} / \mathrm{s}$		
				4	500.00 Kbit/s	4	125 Kbit/s	Eithernet	
				5	187.50 Kbit/s	5	$100 \mathrm{Kbit} / \mathrm{s}$	bAu.F	baudrate
				6	93.75 Kbit/s	6	$50 \mathrm{Kbit/s}$	0	$100 \mathrm{Mbit} / \mathrm{s}$
				7	$45.45 \mathrm{Kbit} / \mathrm{s}$	7	$20 \mathrm{Kbit} / \mathrm{s}$	1	$10 \mathrm{Mbit} / \mathrm{s}$
				8	19.20 Kbit/s	8	$10 \mathrm{Kbit} / \mathrm{s}$		
				9	$9.60 \mathrm{Kbit} / \mathrm{s}$				

346	R/W	Jumper State

Table of Jumper State

Bit		OFF	ON
0	Jumper State S1		
1	Jumper State S2		
2	Jumper State S7-1:	1-Phase	3-Phase
3	Jumper State S7-2:	Star	Delta
4	Jumper State S7-3:	Open Delta	Closed Delta
5	Jumper State S7-4	With Neutral	Without Neutral
6	Jumper State S7-5:	Resistive Load	Inductive Load
7	Jumper State S7-6:	-	CFG Forced
8	Jumper State S7-7:	C4	Simulation 4 C4

| S7-1 | S7-2 | S7-3 | S7-4 | FUNCTION MODES |
| :---: | :---: | :---: | :---: | :---: | :---: |
| OFF | OFF | OFF | OFF | 4 Single Phase loads |
| OFF | ON | OFF | OFF/ON | 3 independent 1-phase loads delta |
| ON | ON | OFF | OFF/ON | 3-Phase Load in Open Delta |
| ON | ON | ON | OFF/ON | 3-Phase Load in Closed |
| ON | OFF | - | ON | 3-Phase star load without |
| ON | OFF | - | OFF | 3-phase star load with neutral |

120	R	Manufacturer - Trademark
121	R	Device ID

Constructors Name		5000
Product ID		
Table of RN LED Functions		
Value	Function	
0	RUN	
1	MAN/AUTO Controller	
2	LOC/REM	
3	HOLD	
4	Selftuning ON	
5	Autotuning ON	
6	Repeat Digital Input D1	
7	Serial 1 Dialog	
8	State of OUT 2 Zone 1	
9	Softstart Running	
10	Indication of SP1...SP2 (SP1 with pilot input inactive and LED Off)	
11	Repeat Digital Input D2	
12	Input in Error (LO, HI, ERR, SBR)	
13	Serial 2 Dialog	
16	LED Flashing if Active (Code 8 Excluded)	

LED status refers to the corresponding parameter, with the following special cases:

- LED RN (green) + LED ER (red) both flashing rapidly: autobaud in progress
- LED ER (red) on: error in one of main inputs (Lo, Hi, Err, Sbr)
- LED ER (red) flashing: temperature alarm (OVER_ HEAT or TEMPERATURE_SENSOR_BROKEN) or SHORT-CIRCUIT_CURRENT alarm (only in threephase configuration)
- LED ER (red) + LED Ox (yellow) both flashing: HB alarm or POWER_FAIL in zone x

- All LEDs flashing rapidly: ROTATION123 alarm (only in three-phase configuration)
- All LEDs flashing rapidly except LED DI1: jumper configuration not provided for
- All LEDs flashing rapidly except LED DI2: 30\%_UNBALANCED_LINE_WARNING alarm (only in threephase configuration)
- All LEDs flashing rapidly except LED O1: SHORT_ CIRCUIT_CURRENT alarm (only in three-phase configuration)
- All LEDs flashing rapidly except LED O2: TRIPHASE_MISSING_LINE_ERROR alarm (only in three-phase configuration)

			Table of instrument settings
bit			
0	-		
1	Select SP1/SP2		
2	Start/Stop Selftuning		
3	Select ON/OFF		
4	Select AUTO/MAN		
5	Start/Stop Autotuning		
6	Select LOC/REM		

	Table of Instrument state
bit	
0	AL.1 or AL.2 or AL.3 or AL.4 or ALHB.TA1 or ALHB. TA2 or ALHB.TA3 or Power Fault
1	Input Lo
2	Input Hi
3	Input Err
4	Input Sbr
5	heat
6	cool
7	LBA
8	AL.1
9	AL.2
10	AL.3
11	AL.4
12	ALHB or Power Fault
13	ON/OFF
14	AUTO/MAN
15	LOC/REM

Table of Instrument state 1
bit
AL. 1 or AL. 2 or AL. 3 or AL. 4 or ALHB.TA1 or ALHB. TA2 or ALHB. TA3 or Power Fault
Input Lo
Input Hi
Input Err
Input Sbr
LBA
AL. 1
AL. 2
AL. 3
AL. 4
ALHB.TA1
ALHB.TA2 (only for three-phase load)
ALHB.TA3 (only for three-phase load)
Selftuning on

	Table of Instrument state 2
bit	
0	AL.1
1	AL.2
2	AL.3
3	AL.4
4	AL.HB1
5	AL.HB2 (only for three-phase load)
6	AL.HB3 (only for three-phase load)
7	AL.Lo
8	AL.Hi
9	AL.Err
10	AL.Sbr
11	AL.LBA
12	AL.Power

633	R	Instrument state 3	Table of Instrument state 3	
			bit	
			3	SSR_SHORT1
			4	SSR_SHORT2 (only for three-phase load)
			5	SSR_SHORT3 (only for three-phase load)
			6	NO_VOLTAGE1
			7	NO_VOLTAGE2 (only for three-phase load)
			8	NO_VOLTAGE3 (only for three-phase load)
			9	NO_CURRENT1
			10	NO_CURRENT2 (only for three-phase load)
			11	NO_CURRENT3 (only for three-phase load)
634	R	Instrument state 4		Table of Instrument state 4
			bit	
			0	SSR Temperature sensor broken
			1	SSR Temperature sensor over heat
			2	phase_softstart_active
			3	phase_softstart_end
			4	frequency_warning or monophase_missing_line_warning
			5	60 Hz
			6	short_circuit_current in phase softstart
			7	over_peak_current in phase softstart
			8	over_ms_current in normal operation
702	R	Voltage status		Table of Voltage Status
			bit	
			0	frequency_warning
			1	10\% unbalanced_line_warning
			2	20\% unbalanced_line_warning
			3	30\% unbalanced_line_warning
			4	rotation123_error
			5	triphase_missing_line_error
			6	60 Hz

Instrument Configuration Sheet

Parameters

Definition of Parameter				Note	Assigned Value
Installation of Modbus Serial Network					
46	Ead	R	Instrument identification code		
45	- H_{1}	R/W	Select Baudrate - Serial 1		
626	- $\mathrm{H}_{\text {al }}$	R/W	Select Baudrate - Serial 2		
47	Pror	R/W	Select Parity - Serial 1		
627	PRr	R/W	Select Parity - Serial 2		

Main Input

90	5.74	R／W	Engineering value attributed to Point 4		
91	$5 . \square 5$	R／W	Engineering value attributed to Point 5		
92	5.95	R／W	Engineering value attributed to Point 6		
93	5.77	R／W	Engineering value attributed to Point 7		
94	5.88	R／W	Engineering value attributed to Point 8		
95	5.78	R／W	Engineering value attributed to Point 9		
96	5.17	R／W	Engineering value attributed to Point 10		
97	5.11	R／W	Engineering value attributed to Point 11		
98	5．13	R／W	Engineering value attributed to Point 12		
99	5.13	R／W	Engineering value attributed to Point 13		
100	5.14	R／W	Engineering value attributed to Point 14		
101	5.15	R／W	Engineering value attributed to Point 15		
102	5.16	R／W	Engineering value attributed to Point 16		
103	5.17	R／W	Engineering value attributed to Point 17		
104	5.18	R／W	Engineering value attributed to Point 18		
105	5.19	R／W	Engineering value attributed to Point 19		
106	5.37	R／W	Engineering value attributed to Point 20		
107	ら．コ！	R／W	Engineering value attributed to Point 21		
108		R／W	Engineering value attributed to Point 22		
109	$5 . 』 3$	R／W	Engineering value attributed to Point 23		
110	5.54	R／W	Engineering value attributed to Point 24		
111	5.35	R／W	Engineering value attributed to Point 25		
112	5．3F	R／W	Engineering value attributed to Point 26		

Load Current Value

220	因号！	R／W	Offset correction CT input （phase 1）		
415	䛧田已	R／W	Offset correction CT input （phase 2）	With 3－Phase Load	
416	回肙き	R／W	Offset correction CT input （phase 3）	With 3－Phase Load	
$\begin{gathered} 227 \\ 473-139 \end{gathered}$	止昌！	R	Instantaneous CT input value （phase 1）		
490	比昌己	R	Instantaneous CT input value （phase 2）		
491	比目き	R	Instantaneous CT input value （phase 3）		
756	IRF I	R	Value of filtered ammeter input （phase 1）		
494	IRF	R	Value of filtered ammeter input （phase 2）		
495	IRF3	R	Value of filtered ammeter input （phase 3）		
468	i inn	R	CT input value with output on （phase 1）		
498	记回	R	CT input value with output on （phase 3）		
499	Iコロロ	R	CT input value with output on （phase 3）		
219	F上上R	R／W	CT input digital filter （phases 1， 2 and 3）		

709	HRP	R	Peak ammeter input during phase softstart ramp
716	LaEF	R	Power factor in hundredths
753	LdR	R	Current on load
754	LdRt	R	Current on 3－phase load

Value of Load Voltage

751	Ldt	R	Voltage on Load
752	Ld！t	R	Voltage on 3－phase Load

Line Voltage Value

411	回说！	R／W	Offset correction voltmeter transformer input TV（phase 1）		
419	困管己	R／W	Offset correction voltmeter transformer input TV（phase 2）	with three－phase load	
420	䛧扣き	R／W	Offset correction voltmeter transformer input TV（phase 3）	with three－phase load	
232 485	比埧！	R	Voltmeter input value（phase 1）		
492	比纪	R	Voltmeter input value（phase 2）		
493	比㜢き	R	Voltmeter input value（phase 3）		
322	HEF	R	Voltmeter input value（phase 1）		
496	H2F	R	Voltmeter input value（phase 2）		
497	H5F	R	Voltmeter input value（phase 3）		
412	FLE！	R／W	Digital filter TV auxiliary input （phase 1，2，3）		
315	FrEg	R	Voltage frequency in tenths of Hz		
710	H2！	R	Linked Voltage V21		
711	Hきコ	R	Linked Voltage V32		
712	H13	R	Linked Voltage V13		
702			Voltage Status		

Power On Load

719	LdP	R	Power on Load
720	LdPL	R	Power on 3-phase Load
749	Ld	R	Impedance on Load
750	Ld K	R	Impedance on 3-phase Load

Auxiliary Analog Input (LIN/TC)

Digital Inputs

Generic Alarms AL1, AL2, AL3 and AL4

LBA Alarm (Loop Break Alarm)

Heater Break Alarm

| 769 | Ir ME | R/W | HB Calibration with IR lamp
 (only for PA modality): current at
 5% conduction |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 744 | HtEr | R | HB alarm setpoint as function of
 power on load |
| 26 | State ff HB alarm or
 Power_fault | R | OFF = Alarm off
 ON = Alarm on |
| bit | | | |

Alarm SBR - ERR (Probe in short or connection error)

229	TEL	R/W	Fau prob	on (in case of broken Err Only for main inp	
228	FRr	R/W		n power (supplied in n of broken probe)	
85	Err	R	Self-diagnosis error code for main input		
$\begin{gathered} 9 \\ \text { bit } \end{gathered}$	State of Input in SBR		R OFF $=-$ ON $=$ Input in SBR		

Power Fault ALARMS (SSR_SHORT, NO_VOLTAGE and NO_CURRENT)

$\begin{gathered} 100 \\ \text { bit } \end{gathered}$	State of alarm NO_VOLTAGE phase 2	R	OFF = Alarm OFF $\mathrm{ON}=$ Active alarm	with 3 phase load	
101	State of alarm NO_VOLTAGE phase 3	R	$\begin{aligned} & \text { OFF = Alarm OFF } \\ & \text { ON = Active alarm } \end{aligned}$	with 3 phase load	
$\begin{gathered} 102 \\ \text { bit } \end{gathered}$	State of alarm NO_CURRENT phase 1	R	$\begin{aligned} & \text { OFF = Alarm OFF } \\ & \text { ON = Active alarm } \end{aligned}$		
103	State of alarm NO_CURRENT phase 2	R	$\begin{aligned} & \text { OFF = Alarm OFF } \\ & \text { ON = Active alarm } \end{aligned}$	with 3 phase load	
104	State of alarm NO_CURRENT phase 3	R	$\begin{aligned} & \text { OFF = Alarm OFF } \\ & \text { ON = Active alarm } \end{aligned}$	with 3 phase load	

ALARM due to overload

655	R	INPTC

Outputs

160	ril	R/W	Allocation of reference signal		
163	-12	R/W	Allocation of reference signal		
166	rı马	R/W	Allocation of reference signal		
170	r-4	R/W	Allocation of reference signal		
171	-15	R/W	Allocation of reference signal		
172	rib	R/W	Allocation of reference signal		
152 9	ELi	R/W	OUT 1 (Heat) cycle time		
159	[12	R/W	OUT 2 (Cool) cycle time		
$\begin{aligned} & 308 \\ & 319 \end{aligned}$		R	State outputs rL.x MASKOUT		
$\begin{aligned} & 12 \\ & \text { bit } \end{aligned}$	STATE rL. 1		R	$\begin{aligned} & \text { OFF = Output off } \\ & \text { ON = Output on } \end{aligned}$	
13 bit	STATE rL. 2		R	$\begin{aligned} & \text { OFF = Output off } \\ & \text { ON = Output on } \end{aligned}$	
14 bit	STATE rL. 3		R	OFF = Output off ON = Output on	
15 bit	STATE rL. 4		R	$\begin{aligned} & \text { OFF = Output off } \\ & \text { ON = Output on } \end{aligned}$	
16 bit	STATE rL. 5		R	$\begin{aligned} & \text { OFF = Output off } \\ & \text { ON = Output on } \end{aligned}$	
17 bit	STATE rL. 6		R	OFF = Output off ON = Output on	

607	口ぃ上！	R／W	Allocation of physical output OUT 1		
608	ロぃしを	R／W	Allocation of physical output OUT 2		
609	ロレ上马	R／W	Allocation of physical output OUT 3		
610	－L 4	R／W	Allocation of physical output OUT 4		
611	口ぃ上	R／W	Allocation of physical output OUT 5		
612	口ぃ上	R／W	Allocation of physical output OUT 6		
613	口ぃ上	R／W	Allocation of physical output OUT 7		
614	口ぃ上昌	R／W	Allocation of physical output OUT 8		
615	口ぃ上	R／W	Allocation of physical output OUT 9		
616	口ut Hf	R／W	Allocation of physical output OUT 10		
$\begin{aligned} & 82 \\ & \text { bit } \end{aligned}$	State of output OUT1			R	$\begin{aligned} & \text { OFF = Uscita disat } \\ & \text { ON = Uscita attiv } \end{aligned}$
83 bit	State of output OUT2			R	
84 bit	State of output OUT3			R	
85 bit	State of output OUT4			R	
$\begin{aligned} & 86 \\ & \text { bit } \end{aligned}$	State of output OUT5			R	
87 bit	State of output OUT6			R	
$\begin{aligned} & 88 \\ & \text { bit } \end{aligned}$	State of output OUT7			R	
$\begin{aligned} & 89 \\ & \text { bit } \end{aligned}$	State of output OUT8			R	
$\begin{gathered} 90 \\ \text { bit } \end{gathered}$	State of output OUT9			R	
91 bit	State of output OUT10			R	
664		R	State outputs		

Power Fault ALARMS (SSR_SHORT, NO_VOLTAGE and NO_CURRENT)

Setpoint Control

PID Heat/ Cool Control

Automatic/Manual Control

Hold Funtion

Manual Power Correction

505	r IF	R/W	Line voltage		
506	LRr	R/W	Manual power correction based on line voltage		
18 $136-249$	SPr	R/W	Remote setpoint (SET Gradient for power correction		

Autotuning

Selftuning

Softstart

Start Mode

Selftuning

Fault Action Power

265	Hat	R/W	Select hot runner functions			
228	FRP	R/W	Fault action power (supplied in conditions of broken probe)			
26	STATE OF HB ALARM OR POWER_FAULT	R/W	OFF = Alarm off ON = Alarm on			
80	State of power alarm (hot runners)	R/W	OFF = Alarm off ON = Alarm on			
bit						

Power Alarm

Preheating Softstart

Heating Output (Fast Cycle)

160	rL	R/W	Allocation of reference signal		
163	rLᄅ	R/W	Allocation of reference signal		

Trigger Modes

703	Hdコ	R／W	Enable trigger mode		
707	FぃKR	R／W	Maximum limit of RMS current at normal operation		
704	LFE马	R／W	Minimum number of cycles of BF modes		

Softstart

Delay Triggering

Feedback Modes

$\begin{gathered} 110 \\ \text { bit } \end{gathered}$	Calibration of current feedback reference		R/W	OFF=Calibration non enabled $\mathrm{ON}=$ Calibration enabled		
$\begin{gathered} 111 \\ \text { hit } \end{gathered}$	Calibration of power feedback reference		R/W	OFF=Calibration non enabled ON= Calibration enabled		
741	F吕	R/W	Feedback response speed			
113	Calibration of selected feedback reference		R/W	OFF=Calibration non enabled ON= Calibration enabled		
464		R/W		ATUS 11_W		
757	Rr if	R		Feedback		

Heuristic Power Control

Heterogeneous Power Control

| 682 | hdt | R/W | Enable heterogeneous
 power control | | | |
| :--- | :--- | :--- | :---: | :--- | :--- | :--- | :--- |
| 683 | HEL | R/W | Maximum current for
 heterogeneous power control | | | |

Virtual Instrument Control

122	1198	R	Software version code	
85	Err	R	Self－diagnosis error code for main input	
606	ErE	R	Self－diagnosis error code for auxiliary input	
190	［ha	R	Hardware configuration codes	
508	［Ma！	R	Self－diagnosis error code for auxiliary input	
$\begin{aligned} & 693 \\ & 697 \end{aligned}$	196F	R	Fieldbus software version	
695	Fraf	R	Fieldbus node	
696	brif	R	Fieldbus baudrate	
346		R	State of jumper	
120		R	Manufacturer－Trade Mark	
121		R	Device ID（C4）	
197	1迫	R／W	RN LED Status Function	
619	1－1］	R／W	ER LED status function	
620	1西	R／W	Function of LED DI1	
621	1－14	R／W	Function of LED DI2	
622	1迫	R／W	Function of LED O1	
623	1－65	R／W	Function of LED O2	
624	1－17	R／W	Function of LED O3	
625	1景咟	R／W	Function of LED O4	
305		R／W	Instrument state（STATUS＿W）	
467		R	Instrument state	
469		R	Instrument state 1	
632		R	Instrument state 2	
633		R	Instrument state 3	

634		R	Instrument state 4	
702		R	Voltage status	

Limited Warranty:
Please refer to the Chromalox limited warranty applicable to this product at http://www.chromalox.com/customer-service/policies/termsofsale.aspx.

Chromalox, Inc.

1347 Heil Quaker Boulevard
 Lavergne, TN 37086
 (615) 793-3900
 www.chromalox.com

[^0]: $\left(^{*}\right)+16$ with automatic switching in GO if PV-SP $>0.5 \%$ f.s. +32 with automatic switching in GO if PV-SP > 1% f.s. +64 with automatic switching in GO if PV-SP > 2% f.s.
 +128 with automatic switching in GO if PV-SP $>4 \%$ f.s.

